已知橢圓
x2
4
+
y2
b2
=1
(0<b<2)與y軸交于A、B兩點,點F為該橢圓的一個焦點,則△ABF面積的最大值為(  )
A、1B、2C、4D、8
分析:欲求△ABF面積的最大值,先利用橢圓的參數(shù)b,c表示出△ABF面積,利用橢圓的參數(shù)b,c間的關(guān)系消去一個參數(shù),再結(jié)合基本不等式求其最大值即可.
解答:解:∵已知橢圓
x2
4
+
y2
b2
=1
(0<b<2)
∴a=2,c=
4-b2

則△ABF面積S=
1
2
AB×OF=
1
2
×
2b×c
=b
4-b2
b2+4-b2 
2
=2

當且僅當b=
2
取等號.
則△ABF面積的最大值為2
故選B.
點評:本題主要考查橢圓的基本性質(zhì)的應(yīng)用和三角形面積的最大值問題.直線與圓錐曲線的綜合題是高考的重點也是熱點問題,每年必考,一定要好好準備.解答的關(guān)鍵是基本不等式的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓
x24
+y2=1
的左、右兩個頂點分別為A,B,直線x=t(-2<t<2)與橢圓相交于M,N兩點,經(jīng)過三點A,M,N的圓與經(jīng)過三點B,M,N的圓分別記為圓C1與圓C2
(1)求證:無論t如何變化,圓C1與圓C2的圓心距是定值;
(2)當t變化時,求圓C1與圓C2的面積的和S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
4
+y2=1
,過E(1,0)作兩條直線AB與CD分別交橢圓于A,B,C,D四點,已知kABkCD=-
1
4

(1)若AB的中點為M,CD的中點為N,求證:①kOMkON=-
1
4
為定值,并求出該定值;②直線MN過定點,并求出該定點;
(2)求四邊形ACBD的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓
x2
4
+y2=1
,弦AB所在直線方程為:x+2y-2=0,現(xiàn)隨機向橢圓內(nèi)丟一粒豆子,則豆子落在圖中陰影范圍內(nèi)的概率為
π-2
π-2

(橢圓的面積公式S=π•a•b,其中a是橢圓長半軸長,b是橢圓短半軸長)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•朝陽區(qū)三模)已知橢圓
x2
4
+y2=1
的焦點分別為F1,F(xiàn)2,P為橢圓上一點,且∠F1PF2=90°,則點P的縱坐標可以是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x24
+y2=1
,過點M(-1,0)作直線l交橢圓于A,B兩點,O是坐標原點.
(1)求AB中點P的軌跡方程;
(2)求△OAB面積的最大值,并求此時直線l的方程.

查看答案和解析>>

同步練習冊答案