已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(2013)-lnx,則f′(2013)=( 。
A.1B.-1C.
1
2013
D.無法確定
由題意可得f(x)=2xf′(2013)-lnx,
求導(dǎo)數(shù)可得f′(x)=2f′(2013)-
1
x

故f′(2013)=2f′(2013)-
1
2013
,
解之可得f′(2013)=
1
2013
,
故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對(duì)數(shù)的底,)(1)求的解析式;(2)設(shè),求證:當(dāng)時(shí),;(3)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知函數(shù)f(x)=x|x2-a| (a∈R),(1)當(dāng)a≤0時(shí),求證函數(shù)f(x)在(-∞,+∞)上是增函數(shù);(2)當(dāng)a=3時(shí),求函數(shù)f(x)在區(qū)間[0,b]上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
設(shè)函數(shù)f(x)=x3+ax2-3x+b(a,b∈R)在x=x1,x=x2處取得極值,且|x1-x2|=2(1)求a的值及函數(shù)f(x)的單調(diào)區(qū)間; (2)若存在x0∈(x1,x2),使得f(x0)=0,求b的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=sinx+ex+x2010,令f1(x)=f′(x),f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),則f2011(x)=( 。
A.sinx+exB.cosx+exC.-sinx+exD.-cosx+ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=
x
1+x2
,則f′(-1)=( 。
A.-1B.0C.
1
2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)y=xsinx+cosx的圖象上的點(diǎn)(x0,y0)的切線的斜率為k,若k=g(x0),則函數(shù)k=g(x0),x0∈[-π,π]的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知e是自然對(duì)數(shù)的底數(shù),則(e2)′=( 。
A.2eB.e2C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,若,,則     。

查看答案和解析>>

同步練習(xí)冊(cè)答案