【題目】對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

10

0.25

25

2

0.05

合計

1

(1)求出表中及圖中的值;

(2)試估計他們參加社區(qū)服務的平均次數(shù);

(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至少1人參加社區(qū)服務次數(shù)在區(qū)間內(nèi)的概率.

【答案】(1)(2)

【解析】試題分析:

(1)由頻率分布直方圖的性質(zhì)可得: . .

(2)由題意可得平均次數(shù)約為17次;

(3)將頻率看作概率,列出所有事件可得至少1人參加社區(qū)服務次數(shù)在區(qū)間內(nèi)的概率為 .

試題解析:

解:(1)由題可知, , .

,

解得, , .

.

組的頻率與組距之比.

(2)參加社區(qū)服務的平均次數(shù)為:

次.

(3)在樣本中,處于內(nèi)的人數(shù)為3,可分別記為 ,

處于內(nèi)的人數(shù)為2,可分別記為,

從該5名學生中取出2人的取法有:

, , , , , , 共10種.

至少1人在內(nèi)的情況共有9種,

∴至少1人參加社區(qū)服務次數(shù)在區(qū)間內(nèi)的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為: ,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的長度單位建立極坐標系,曲線C的極坐標方程為.

(1)求直線和曲線C的普通方程;

(2)在直角坐標系中,過點B(0,1)作直線的垂線,垂足為H,試以為參數(shù),求動點H軌跡的參數(shù)方程,并指出軌跡表示的曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校準備組織師生共60人,從南靖乘動車前往廈門參加夏令營活動,動車票價格如表所示:(教師按成人票價購買,學生按學生票價購買).

運行區(qū)間

成人票價(元/張)

學生票價(元/張)

出發(fā)站

終點站

一等座

二等座

二等座

南靖

廈門

26

22

16

若師生均購買二等座票,則共需1020元.
(1)參加活動的教師有人,學生有人;
(2)由于部分教師需提早前往做準備工作,這部分教師均購買一等座票,而后續(xù)前往的教師和學生均購買二等座票.設提早前往的教師有x人,購買一、二等座票全部費用為y元.
①求y關于x的函數(shù)關系式;
②若購買一、二等座票全部費用不多于1032元,則提早前往的教師最多只能多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1 , S2 , S3 , …,S10 , 則S1+S2+S3+…+S10=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐S-ABCD中,底面ABCD為菱形,SD⊥平面ABCD,點ESD的中點.

(1)求證:直線SB∥平面ACE

(2)求證:直線AC⊥平面SBD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關信息,如表所示:

銷售量n(件)

n=50﹣x

銷售單價m(元/件)

當1≤x≤20時,m=20+ x

當21≤x≤30時,m=10+


(1)請計算第幾天該商品單價為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關于x(天)的函數(shù)關系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“五一”假期期間,某餐廳對選擇、三種套餐的顧客進行優(yōu)惠。對選擇、套餐的顧客都優(yōu)惠10元,對選擇套餐的顧客優(yōu)惠20元。根據(jù)以往“五一”假期期間100名顧客對選擇、、三種套餐的情況得到下表:

選擇套餐種類

選擇每種套餐的人數(shù)

50

25

25

將頻率視為概率.

(I)若有甲、乙、丙三位顧客選擇某種套餐,求三位顧客選擇的套餐至少有兩樣不同的概率;

(II)若用隨機變量表示兩位顧客所得優(yōu)惠金額的綜合,求的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的最小值;

(2)當時,若對,,使得成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A,B,C所對邊分別為a,b,c,a=2,B=45°,①當b= 時,三角形有個解;②若三角形有兩解,則b的取值范圍是

查看答案和解析>>

同步練習冊答案