設(shè)圓滿(mǎn)足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)的比為3∶1,在滿(mǎn)足條件①②的所有圓中,求圓心到直線(xiàn)l:x-2y=0的距離最小的圓的方程.

答案:
解析:

  解:設(shè)圓的圓心為P(a,b),半徑為r,則點(diǎn)P到x軸、y軸的距離分別為|b|、|a|.由題設(shè)知圓P截x軸所得的劣弧對(duì)的圓心角為90°,知圓P截x軸所得的弦長(zhǎng)為,故r2=2b2.又圓P截y軸所得的弦長(zhǎng)為2,所以有r2=a2+1.從而得2b2-a2=1.又點(diǎn)P(a,b)到直線(xiàn)x-2y=0的距離為,所以a-2b=,得a2=4b2±bd+5d2①,將a2=2b2-1代入①式,整理得2b2±4db+5d2+1=0②,把它看作b的二次方程,由于方程有實(shí)根,故判別式非負(fù),即Δ=8(5d2-1)≥0,可解得5d2≥1.所以5d2有最小值1,從而d有最小值.把代入②式得2b2±4b+2=0,解得b=±1.將b=±1代入r2=2b2,得r2=2.

  由r2=a2+1得a=±1.

  綜上a=±1,b=±1r2=2.由|a-2b|=1知a,b同號(hào).于是所求圓的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2.

思路解析:可設(shè)圓的標(biāo)準(zhǔn)方程,由①有垂徑定理,即r2=|a|2+1;由②有劣弧對(duì)的圓心角為90°,即所截弦長(zhǎng)為,于是有r2=2b2,再由圓心到直線(xiàn)的距離可求得圓心坐標(biāo)和半徑.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿(mǎn)足條件
QM
=2
QP
的點(diǎn)M的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線(xiàn)l被曲線(xiàn)C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線(xiàn)OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線(xiàn),切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過(guò)點(diǎn)M且不過(guò)圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[
 
1
1
],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為p=2
2
sin(θ-
π
4
),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線(xiàn)l被曲線(xiàn)C所截得的弦長(zhǎng).
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿(mǎn)足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿(mǎn)足條件數(shù)學(xué)公式的點(diǎn)M的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線(xiàn)l被曲線(xiàn)C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線(xiàn)OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷3(文科)(解析版) 題型:解答題

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿(mǎn)足條件的點(diǎn)M的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線(xiàn)l被曲線(xiàn)C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線(xiàn)OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷(文科)(解析版) 題型:解答題

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿(mǎn)足條件的點(diǎn)M的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線(xiàn)l被曲線(xiàn)C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線(xiàn)OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案