【題目】已知全集U=R,集合A={x|x≤﹣2或x≥3},B={x|x≥1},則(UA)∩B=( )
A.{x|1≤x<3}
B.{x|2≤x<3}
C.{x|x>3}
D.

【答案】A
【解析】解:∵全集U=R,A={x|x≤﹣2或x≥3},B={x|x≥1},

UA={x|﹣2<x<3},

則(UA)∩B={x|1≤x<3},

所以答案是:A.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解交、并、補(bǔ)集的混合運(yùn)算(求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足f(x+2)=﹣2f(x),當(dāng)x∈(0,2]時,f(x)=2x , 則在區(qū)間(4,6]上滿足f(x)=f(3)+12的實數(shù)x的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是減函數(shù),那么實數(shù)a取值范圍是(
A.a≤﹣3
B.a≥﹣3
C.a≤5
D.a≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=log2(3﹣2x)的零點(diǎn)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x2﹣4x+5在區(qū)間[0,m]上的最大值為5,最小值為1,則實數(shù)m的取值范圍是(
A.[2,+∞)
B.[2,4]
C.[0,4]
D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,若an>0,公差d>0,則有a4a6>a3a7 , 類比上述性質(zhì),在等比數(shù)列{bn}中,若bn>0,q>1,則b4 , b5 , b7 , b8的一個不等關(guān)系是(
A.b4+b8>b5+b7
B.b5+b7>b4+b8
C.b4+b7>b5+b8
D.b4+b5>b7+b8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】復(fù)數(shù)a+bi(a,b∈R)的平方是實數(shù)等價于(
A.a2+b2=0
B.a=0且b=0
C.a≠0
D.ab=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組有2名男生和2名女生,從中任選2名同學(xué)去參加演講比賽.在下列選項中,互斥而不對立的兩個事件是(
A.“至少有1名女生”與“都是女生”
B.“至少有1名女生”與“至多1名女生”
C.“恰有1名女生”與“恰有2名女生”
D.“至少有1名男生”與“都是女生”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A={x|﹣5<x<1},B={x|﹣2<x<8},C={x|x<a},全集為實數(shù)集R
(1)求A∪B,(RA)∩B;
(2)若A∩BC,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案