【題目】如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC,E,F分別是AB1,BC1的中點(diǎn).有下列結(jié)論:
①EF⊥BB1;
②EF∥平面A1B1C1D1;
③EF與C1D所成角為45°;
④EF⊥平面BCC1B1.
其中不成立的是( )
A.②③
B.①④
C.③④
D.①③
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表1所示:表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù),繪制了如圖所示的散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),與均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表l中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次;
(3)推廣期結(jié)束后,車隊(duì)對(duì)乘客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如表2
表2:
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
比例 |
已知該線路公交車票價(jià)為2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的乘客,享受7折優(yōu)惠的概率為,享受8折優(yōu)惠的概率為,享受9折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,估計(jì)一名乘客一次乘車的平均費(fèi)用.
參考數(shù)據(jù):
66 | 1.54 | 2.711 | 50.12 | 3.47 |
其中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓的焦距為,直線截圓與橢圓所得的弦長(zhǎng)之比為,圓、橢圓與軸正半軸的交點(diǎn)分別為,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)(且)為橢圓上一點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線,分別交軸于點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,其中,則下列判斷正確的是__________.(寫出所有正確結(jié)論的序號(hào))
①關(guān)于點(diǎn)成中心對(duì)稱;
②在上單調(diào)遞增;
③存在,使;
④若有零點(diǎn),則;
⑤的解集可能為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個(gè)有趣的數(shù)學(xué)問題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營(yíng),怎樣走才能使總路程最短?在如圖所示的直角坐標(biāo)系中,設(shè)軍營(yíng)所在平面區(qū)域?yàn)?/span>,河岸線所在直線方程為.假定將軍從點(diǎn)處出發(fā),只要到達(dá)軍營(yíng)所在區(qū)域即回到軍營(yíng),則將軍可以選擇最短路程為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)小張三次射擊恰有兩次命中十環(huán)的概率,先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定2,4,6,8表示命中十環(huán),0,1,3,5,7,9表示未命中十環(huán),再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
321 421 292 925 274 632 800 478 598 663 531 297 396
021 506 318 230 113 507 965
據(jù)此估計(jì),小張三次射擊恰有兩次命中十環(huán)的概率為()
A. 0.25B. 0.30C. 0.35D. 0.40
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為,點(diǎn)在橢圓上.
(1)設(shè)點(diǎn)到直線的距離為,證明:為定值;
(2)若是橢圓上的兩個(gè)動(dòng)點(diǎn)(都不與重合),直線的斜率互為相反數(shù),當(dāng)時(shí),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)恰好是橢圓的右焦點(diǎn).
(1)求實(shí)數(shù)的值及拋物線的準(zhǔn)線方程;
(2)過點(diǎn)任作兩條互相垂直的直線分別交拋物線于、和、點(diǎn),求兩條弦的弦長(zhǎng)之和的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com