設Sn為數(shù)列{an}的前n項和,an=1+2+22+…+2n-1,則Sn的值為( 。
A、2n-1
B、2n-1-1
C、2n-n-2
D、2n+1-n-2
考點:數(shù)列的求和
專題:計算題,等差數(shù)列與等比數(shù)列
分析:運用等比數(shù)列的求和公式,求出an,再運用分組求和方法,再由等比數(shù)列的求和公式,即可得到結論.
解答: 解:an=1+2+22+…+2n-1
=
1-2n
1-2
=2n-1,
則Sn=(2-1)+(22-1)+…+(2n-1)
=(2+22+…+2n)-n
=
2(1-2n)
1-2
-n=2n+1-2-n.
故選D.
點評:本題考查等比數(shù)列的通項和求和公式及運用,考查分組求和的方法,考查運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動點P在曲線y=2x2上移動,則點A(0,-2)與點P連線中點的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四邊形OABC中,OA⊥OC,AB⊥BC,且OA=6,OC=17,tan∠BCO=
4
3
,圓M的圓心在線段OA上,圓M與直線BC相切,兩點O與A到圓M上任意一點的距離均不小于8.
(1)求AB的長;
(2)OM多長時,圓M的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一個幾何體的三視圖(單位:cm),計算這個幾何體的體積與表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱柱ABC-A1B1C1中,側棱與底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分別是AB,A1C的中點.
(1)求證:BC⊥平面BB1A1A;
(2)求證:MN∥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)計算:
.
111
333
479
.
;
(2)根據(jù)(1)寫出行列式的性質(zhì)并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中,P是棱AD的中點,求二面角A-BD1-P的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程25-|x+1|-4×5-|x+1|=m有實根,則實數(shù)m的取值范圍是( 。
A、m<0B、m≥-4
C、-4≤m<0D、-3≤m<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,邊長為4的正△ABC頂點A在平面α上,B,C在平面α的同側,M為BC的中點.若△ABC在平面α上的射影是以A為直角頂點的三角形AB1C1,則M到平面α的距離的取值范圍是
 

查看答案和解析>>

同步練習冊答案