設(shè)f(x)=x5-5x4+10x3-10x2+5x+1,則f-1(x)等于(  )
A、1+
5x
B、1-
5x-2
C、1+
5x-2
D、1-
5x
分析:題中條件:“f(x)=x5-5x4+10x3-10x2+5x+1”聯(lián)想到二項(xiàng)式定理,由二項(xiàng)式定理得f(x)的表達(dá)式,再求它的反函數(shù)即得f-1(x).
解答:解:∵f(x)=x5-5x4+10x3-10x2+5x+1
∴f(x)=x5-5x4+10x3-10x2+5x-1+2,
∴f(x)=(x-1)5-2,
∴其反函數(shù)是y=1+
5x-2

故選C.
點(diǎn)評:本題考查二項(xiàng)式定理以及反函數(shù)的求法,是一道中檔題,解題的關(guān)鍵是利用二項(xiàng)式定理化簡原函數(shù)的表達(dá)式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
lg|x-2|,x≠2
1,x=2
,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有5個(gè)不同的實(shí)數(shù)解x1、x2、x3、x4、x5則f(x1+x2+x3+x4+x5)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、(理)設(shè)定義域?yàn)镽的函數(shù)f(x)=|x2-2x-3|,若關(guān)于x的方程f2(x)+bf(x)+c=0有且只有5個(gè)不同的實(shí)數(shù)根x1,x2,x3,x4,x5,則x1+x2+x3+x4+x5=
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(理)設(shè)定義域?yàn)镽的函數(shù)f(x)=|x2-2x-3|,若關(guān)于x的方程f2(x)+bf(x)+c=0有且只有5個(gè)不同的實(shí)數(shù)根x1,x2,x3,x4,x5,則x1+x2+x3+x4+x5=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省衡陽八中高三(上)第五次月考數(shù)學(xué)試卷(理科) (解析版) 題型:填空題

(理)設(shè)定義域?yàn)镽的函數(shù)f(x)=|x2-2x-3|,若關(guān)于x的方程f2(x)+bf(x)+c=0有且只有5個(gè)不同的實(shí)數(shù)根x1,x2,x3,x4,x5,則x1+x2+x3+x4+x5=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)模擬沖刺試卷(一)(解析版) 題型:解答題

(理)設(shè)定義域?yàn)镽的函數(shù)f(x)=|x2-2x-3|,若關(guān)于x的方程f2(x)+bf(x)+c=0有且只有5個(gè)不同的實(shí)數(shù)根x1,x2,x3,x4,x5,則x1+x2+x3+x4+x5=   

查看答案和解析>>

同步練習(xí)冊答案