【題目】為了分析某個高三學(xué)生的學(xué)習(xí)狀態(tài).現(xiàn)對他前5次考試的數(shù)學(xué)成績x,物理成績y進行分析.下面是該生前5次考試的成績.
數(shù)學(xué) | 120 | 118 | 116 | 122 | 124 |
物理 | 79 | 79 | 77 | 82 | 83 |
附..
已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,求物理成績y與數(shù)學(xué)成績x的回歸直線方程;
我們常用來刻畫回歸的效果,其中越接近于1,表示回歸效果越好.求.
已知第6次考試該生的數(shù)學(xué)成績達(dá)到132,請你估計第6次考試他的物理成績大約是多少?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右頂點分別為,,左、右焦點分別為,,離心率為,點,為線段的中點.
()求橢圓的方程.
()若過點且斜率不為的直線與橢圓交于、兩點,已知直線與相交于點,試判斷點是否在定直線上?若是,請求出定直線的方程;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有下列四個命題:
:若,則;
:若,則;
:“”是“為奇函數(shù)”的充要條件;
:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.
其中,真命題的是
A. ,B. ,C. ,D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | ||
第2組 | n | ||
第3組 | 30 | p | |
第4組 | 20 | ||
第5組 | 10 | ||
合計 | 100 |
(1)求頻率分布表中n,p的值,完善頻率分布直方圖并估計該組數(shù)據(jù)的中位數(shù)保留l位小數(shù);
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進入第二輪面試,學(xué)校決定從這6名學(xué)生中隨機抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某職業(yè)學(xué)校有2000名學(xué)生,校服務(wù)部為了解學(xué)生在校的月消費情況,隨機調(diào)查了100名學(xué)生,并將統(tǒng)計結(jié)果繪成直方圖如圖所示.
(1)試估計該校學(xué)生在校月消費的平均數(shù);
(2)根據(jù)校服務(wù)部以往的經(jīng)驗,每個學(xué)生在校的月消費金額(元)和服務(wù)部可獲得利潤(元),滿足關(guān)系式:根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:
(i)將校服務(wù)部從一個學(xué)生的月消費中,可獲得的利潤記為,求的分布列及數(shù)學(xué)期望.
(ii)若校服務(wù)部計劃每月預(yù)留月利潤的,用于資助在校月消費低于400元的學(xué)生,估計受資助的學(xué)生每人每月可獲得多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實數(shù)m滿足使方程1,其中a>0為雙曲線:命題q:實數(shù)m滿足.
(1)若a=1且p∧q為真,求實數(shù)m的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓M經(jīng)過點F(1,0),且與直線l:x=﹣1相切,動圓圓心M的軌跡記為曲線C
(1)求曲線C的軌跡方程
(2)若點P在y軸左側(cè)(不含y軸)一點,曲線C上存在不同的兩點A、B,滿足PA,PB的中點都在曲線C上,設(shè)AB中點為E,證明:PE垂直于y軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) 部分圖象如圖所示.
(1)求的最小正周期及解析式;
(2)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點P是圓C:上的任意一點,線段PQ的垂直平分線與直線CP交于點M.
求點M的軌跡方程;
過點作直線與點M的軌跡交于點E,過點作直線與點M的軌跡交于點F不重合,且直線AE和直線BF的斜率互為相反數(shù),直線EF的斜率是否為定值,若為定值,求出直線EF的斜率;若不是定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com