已知點(diǎn)P為橢圓C:
x2
4
+
y2
3
=1上動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2分別是橢圓C的焦點(diǎn),則|PF1|-|PF2|的最大值為(  )
分析:根據(jù)橢圓的幾何性質(zhì),可得當(dāng)P與橢圓的右頂點(diǎn)重合時(shí)|PF1|的取得最大值且|PF2|取得最小值,故此時(shí)|PF1|-|PF2|取得最大值2,得到本題答案.
解答:解:∵點(diǎn)P為橢圓C:
x2
4
+
y2
3
=1上動(dòng)點(diǎn),
∴a=2,b=
3
,可得c=
a2-b2
=1
運(yùn)動(dòng)點(diǎn)P可得|PF1|∈[a-c,a+c],即|PF1|∈[1,3]
當(dāng)P與橢圓的左頂點(diǎn)重合時(shí),|PF1|的最小值為1;當(dāng)P與橢圓的右頂點(diǎn)重合時(shí),
|PF1|的最大值為3
同理,P與橢圓的左頂點(diǎn)重合時(shí),|PF2|的最大值為3;當(dāng)P與橢圓的右頂點(diǎn)重合時(shí),|PF2|的最小值為1
∴當(dāng)P與橢圓的右頂點(diǎn)重合時(shí),|PF1|-|PF2|達(dá)到最大值,最大值為3-1=2.
故選:A
點(diǎn)評(píng):本題給出橢圓上動(dòng)點(diǎn)P,求它與左、右焦點(diǎn)距離之差的最大值,著重考查了橢圓的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)P為橢圓
x2
25
+
y2
9
=1
在第一象限內(nèi)的任意一點(diǎn),過橢圓的右頂點(diǎn)A和上頂點(diǎn)B分別作與y軸和x軸的平行線交于C,過P引BC、AC的平行線交AC于N,交BC于M,交AB于D、E,矩形PMCN的面積是S1,三角形PDE的面積是S2,則S1:S2=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心為原點(diǎn)O,點(diǎn)F(1,0)是它的一個(gè)焦點(diǎn),直線l過點(diǎn)F與橢圓C交于A,B兩點(diǎn),當(dāng)直線l垂直于x軸時(shí),
OA
OB
=
1
2

(I)求橢圓C的方程;
(II)已知點(diǎn)P為橢圓的上頂點(diǎn),且存在實(shí)數(shù)t使
PA
+
PB
=t
PF
成立,求實(shí)數(shù)t的值和直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P在橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)上,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn),滿足|PF1|=6-|PF2|,且橢圓C的離心率為
5
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)Q(1,0)且不與x軸垂直的直線l與橢圓C相交于兩個(gè)不同點(diǎn)M、N,在x軸上是否存在定點(diǎn)G,使得
GM
GN
為定值.若存在,求出所有滿足這種條件的點(diǎn)G的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心為原點(diǎn)O,點(diǎn)F2(1,0)是它的一個(gè)焦點(diǎn),直線l過點(diǎn)F2與橢圓C交于A,B兩點(diǎn),當(dāng)直線l垂直于x軸時(shí),△OAB的面積S△OAB=
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)P在橢圓C上,F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鷹潭一模)已知點(diǎn)P是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上的點(diǎn),橢圓短軸長為2,F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),|OP|=
10
2
,
PF1
PF2
=
1
2
(點(diǎn)O為坐標(biāo)原點(diǎn)).
(Ⅰ)求橢圓C的方程及離心率;
(Ⅱ)直線y=x與橢圓C在第一象限交于A點(diǎn),若橢圓C上兩點(diǎn)M、N使
OM
+
ON
OA
,λ∈(0,2)求△OMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案