【題目】已知函數(shù)f(x)=bax , (其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,8),B(3,32)
(1)求f(x)的解析式;
(2)若不等式+1﹣2m≥0在x∈(﹣∞,1]上恒成立,求實(shí)數(shù)m的取值范圍.

【答案】解:(1)把點(diǎn)A(1,8),B(3,32)代入函數(shù)f(x)=bax , 可得,求得,∴f(x)=42x
(2)不等式+1﹣2m≥0,即 m≤[]2++
令t=,則 m≤t2+t+
記g(t)=t2+t+=(t+)2+,由x∈(﹣∞,1],可得t≥
故當(dāng)t=時(shí),函數(shù)g(t)取得最小值為
由題意可得,m≤g(t)min , ∴m≤
【解析】(1)把點(diǎn)A(1,8),B(3,32)代入函數(shù)f(x)=bax , 求得a、b的值,可得f(x)的解析式.
(2)不等式即 m≤[]2++ , 令t= , 則 m≤t2+t+ . 利用二次函數(shù)的性質(zhì)求得g(t)=t2+t+ 的最小值,可得m的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD﹣A1B1C1D1是正方體,E,F(xiàn),G,H,M,N分別是所在棱的中點(diǎn),則下列結(jié)論錯(cuò)誤的有
①GH和MN是平行直線;GH和EF是相交直線
②GH和MN是平行直線;MN和EF是相交直線
③GH和MN是相交直線;GH和EF是異面直線
④GH和EF是異面直線;MN和EF也是異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不同直線m,n和不同平面α,β,給出下列命題:
, ② , ③m,n異面,④
其中假命題有:( 。
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn)O(0,0),A(3,0),動(dòng)點(diǎn)P到定點(diǎn)O距離與到定點(diǎn)A的距離的比值是
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程,并說明方程表示的曲線;
(Ⅱ)當(dāng)λ=4時(shí),記動(dòng)點(diǎn)P的軌跡為曲線D.F,G是曲線D上不同的兩點(diǎn),對(duì)于定點(diǎn)Q(﹣3,0),有|QF||QG|=4.試問無論F,G兩點(diǎn)的位置怎樣,直線FG能恒和一個(gè)定圓相切嗎?若能,求出這個(gè)定圓的方程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , 垂直于底面, , 分別為 的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)求四棱錐的體積和截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用AB兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;

甲班(A方式)

乙班(B方式)

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

(Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心坐標(biāo),直線被圓截得弦長(zhǎng)為

(Ⅰ)求圓的方程;

(Ⅱ)從圓外一點(diǎn)向圓引切線,求切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)同時(shí)滿足:(。⿲(duì)于定義域內(nèi)的任意x,恒有f(x)+f(﹣x)=0;(ⅱ)對(duì)于定義域內(nèi)的任意x1 , x2 , 當(dāng)x1≠x2時(shí),恒有 , 則稱函數(shù)f(x)為“二維函數(shù)”.現(xiàn)給出下列四個(gè)函數(shù):
①f(x)=
②f(x)=﹣x3+x


其中能被稱為“二維函數(shù)”的有 (寫出所有滿足條件的函數(shù)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱ABC﹣A1B1C1中,點(diǎn)D是棱BC的中點(diǎn).
求證:(1)AD⊥C1D;
(2)A1B∥平面ADC1

查看答案和解析>>

同步練習(xí)冊(cè)答案