【題目】如圖所示的幾何體中,ABC﹣A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值為 ,求三棱錐C1﹣A1CD的體積.
【答案】
(1)證明:連接A1C交AC1于E,因為AA1=AC,又A A1⊥平面ABCD,所以AA1⊥AC,
所以A1ACC1為正方形,所以A1C⊥AC1,
在△ACD中,AD=2CD,∠ADC=60°,由余弦定理得 AC2=AD2+CD2﹣2 ACDCcos60°,
所以 ,所以AD2=AC2+CD2,
所以CD⊥AC,又AA1⊥CD.所以CD⊥平面A1ACC1,
所以CD⊥AC1,所以AC1⊥平面A1 B1CD.
(2)如圖建立直角坐標系,則D(2,0,0), , , ∴ ,
對平面 AC1D,因為 ,
所以法向量 ,
平面C1CD的法向量為 ,
由 ,得λ=1,
所以 A A1=AC,此時,CD=2, ,
所以
【解析】(1)連接A1C交AC1于E,證明AA1⊥AC,CD⊥AC,推出CD⊥平面A1ACC1 , 然后證明AC1⊥平面A1 B1CD.(2)如圖建立直角坐標系,求出相關點的坐標,求出平面 AC1D的法向量 ,平面C1CD的法向量為 ,通過向量的數(shù)量積求出λ=1,然后利用等體積法求解體積即可.
【考點精析】關于本題考查的直線與平面垂直的判定,需要了解一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機抽取名中學生的筆試成績,按成績分組,得到的頻率分布表如表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | ||
第2組 | ① | ||
第3組 | 30 | ② | |
第4組 | 20 | ||
第5組 | 10 |
(1)請先求出頻率分布表中位置的相應數(shù)據,再完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第組中用分層抽樣抽取名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試;
(3)在(2)的前提下,學校決定在名學生中隨機抽取名學生接受考官進行面試,求:第組至少有一名學生被考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x2–2x+2.
(1)求函數(shù)f(x)的解析式;
(2)當x∈[m,n]時,f(x)的取值范圍為[2m,2n],試求實數(shù)m,n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形為梯形,平面,,
為中點.
(1)求證:平面平面;
(2)線段上是否存在一點,使平面?若存在,找出具體位置,并進行證明:若不存在,請分析說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設曲線C經過伸縮變換得到曲線,設M(x,y)為上任意一點,求的最小值,并求相應的點M的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線是拋物線的準線,直線,且與拋物線沒有公共點,動點在拋物線上,點到直線和的距離之和的最小值等于2.
(Ⅰ)求拋物線的方程;
(Ⅱ)點在直線上運動,過點做拋物線的兩條切線,切點分別為,在平面內是否存在定點,使得恒成立?若存在,請求出定點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某市年月日至日的空氣質量指數(shù)趨勢圖,某人隨機選擇年月日至月日中的某一天到達該市,并停留天.
(1)求此人到達當日空氣質量指數(shù)大于的概率;
(2)設是此人停留期間空氣質量指數(shù)小于的天數(shù),求的分布列與數(shù)學期望;
(3)由圖判斷從哪天開始連續(xù)三天的空氣質量指數(shù)方差最大?(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD-A′B′C′D′的棱長為a,連接A′C′,A′D,A′B,BD,BC′,C′D,得到一個三棱錐.求:
(1)三棱錐A′-BC′D的表面積與正方體表面積的比值;
(2)三棱錐A′-BC′D的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象過點.
(1)求的值并求函數(shù)的值域;
(2)若關于的方程有實根,求實數(shù)的取值范圍;
(3)若函數(shù),則是否存在實數(shù),使得函數(shù)的最大值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com