【題目】佳木斯一中從高二年級甲、乙兩個班中各選出7名學生參加2017年全國高中數(shù)學聯(lián)賽(黑龍江初賽),他們取得的成績(滿分140分)的莖葉圖如圖所示,其中甲班學生成績的中位數(shù)是81,乙班學生成績的平均數(shù)是86,若正實數(shù)滿足, 成等差數(shù)列且 , 成等比數(shù)列,則的最小值為( )

A. B. 2 C. D. 8

【答案】C

【解析】甲班學生成績的中位數(shù)是80+x=81,得x=1;

由莖葉圖可知乙班學生的總分為76+80×3+90×3+(0+2+y+1+3+6)=598+y,

又乙班學生的平均分是86,

總分又等于86×7=602.所以y=4,

若正實數(shù)a、b滿足:a,G,b成等差數(shù)列且x,G,y成等比數(shù)列,

xy=G2,2G=a+b,即有a+b=4,a0,b0,

=a+b)(=1+4++5+2=×9=,

當且僅當b=2a=時,則的最小值為

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)的最小值為1f(0)f(2)3.

(1)f(x)的解析式;

(2)f(x)在區(qū)間[2a,a1]上不單調,求實數(shù)a的取值范圍;

(3)在區(qū)間[1,1],yf(x)的圖象恒在y2x2m1的圖象上方試確定實數(shù)m的范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知橢圓兩個焦點的坐標分別是, ,并且經過點

(1)求橢圓的標準方程;

(2) 已知是橢圓的左頂點,斜率為的直線交橢圓, 兩點,

上, , ,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,的中點.

求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進一步的認識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進行統(tǒng)計分析,得出下表數(shù)據.

x

4

5

7

8

y

2

3

5

6

(1)請根據上表提供的數(shù)據,用最小二乘法求出y關于x的線性回歸方程;

(2)試根據(1)求出的線性回歸方程,預測燃放煙花爆竹的天數(shù)為9的霧霾天數(shù).

(相關公式:)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線L經過點P(-2,5),且斜率為

(1)求直線L的方程.

(2)求與直線L平行,且過點(2,3)的直線方程.

(3)求與直線L垂直,且過點(2,3)的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,若函數(shù)的最小正周期為,且在上單調遞減.

(1)的解析式;

(2)若關于的方程有實數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市電視臺為了解市民對我市舉辦的春節(jié)文藝晚會的關注情況,組織了一次抽樣調查,下面是調查中

的其中一個方面:

按類型用分層抽樣的方法抽取份問卷,其中屬“看直播”的問卷有份.

(1)求的值;

(2)為了解市民為什么不看的一些理由,用分層抽樣的方法從“不看”問卷中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取份,求至少有份是女性問卷的概率;

(3)現(xiàn)從(2)所確定的總體中每次都抽取1份,取后不放回,直到確定出所有女性問卷為止,記所要抽取的次數(shù)為,直接寫出的所有可能取值(無需推理).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)有以下說法:

的極值點.

②當時, 上是減函數(shù).

的圖像與處的切線必相交于另一點.

④當時, 上是減函數(shù).

其中說法正確的序號是_______________.

查看答案和解析>>

同步練習冊答案