已知命題p:關(guān)于x的方程2x=
3+a5-a
有負(fù)根;命題q:不等式|x+1|+|x-1|<a的解集為∅,若p或q是真命題,p且q是假命題,求實(shí)數(shù)a的范圍.
分析:分別求出命題p和命題q的等價(jià)條件,然后利用復(fù)合命題p或q為真命題,p且q為假命題,求出實(shí)數(shù)a的取值范圍.
解答:解:關(guān)于x的方程2x=
3+a
5-a
有負(fù)根,則0<
3+a
5-a
<1
,
解得
-3<a<5
a<1或a>5
,即-3<a<1
,
即p:-3<a<1.¬p:a≥1或a≤-3.
因?yàn)椴坏仁絴x+1|+|x-1|<a的解集為∅,則a≤2.
即q:a≤2.¬q:a>2.
因?yàn)閜或q是真命題,p且q是假命題,所以p,q一真一假.
-3<a<1
a>2
a≤2
a≥1或a≤-3

解得a≤-3或1≤a≤2.
點(diǎn)評(píng):本題考查復(fù)合命題與簡單命題真假之間的關(guān)系,先將命題p,q進(jìn)行等價(jià)轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:關(guān)于x的不等式x2+(a-1)x+1≤0的解集為∅,命題q:方程
x2
2
+
y2
a
=1表示焦點(diǎn)在y軸上的橢圓,若命題¬q為真命題,p∨q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程x2-ax+4=0有實(shí)根,命題q:關(guān)于x函數(shù)y=2x2+ax+4在[3,+∞)上為增函數(shù),若“p或q”為真命題,“p且q”為假命題,則實(shí)數(shù)a取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的不等式x2-2x-a>0解集為R;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果“p且q”為假命題,“p或q”為真命題,則實(shí)數(shù)a的取值范圍為
[-1,1)∪(
5
2
,+∞)
[-1,1)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“關(guān)于x的方程x2-ax+a=0無實(shí)根”和命題q:“函數(shù)f(x)=x2-ax+a在區(qū)間[-1,+∞)上單調(diào).如果命題p∨q是假命題,那么,實(shí)數(shù)a的取值范圍是( 。
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程x2-2x+a=0有實(shí)根,命題q:函數(shù)f(x)=(a+1)x+2是減函數(shù),若p∨q是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案