如圖,過半徑為R的球面上一點(diǎn)P作三條兩兩垂直的弦PA、PB、PC,
(1)求證:PA2+PB2+PC2為定值;
(2)求三棱錐P-ABC的體積的最大值.
解:(1)設(shè)過PA、PB的平面截球得⊙O1,∵PA⊥PB,
∴AB是⊙O1的直徑,連PO1并延長交⊙O1于D,則PADB是矩形,PD2=PA2+PB2.
設(shè)O為球心,則OO1⊥平面⊙O1,
∵PC⊥⊙O1平面,
∴OO1∥PC,因此過PC、PD的平面經(jīng)過球心O,截球得大圓,又PC⊥PD.
∴CD是球的直徑.
故PA2+PB2+PC2=PD2+PC2=CD2=4R2定值.
(2)設(shè)PA、PB、PC的長分別為x、y、z,則三棱錐P-ABC的體積V=xyz,
V2=x2y2z2≤()3=·=R6.
∴V≤R3.
即V最大=R3.
評(píng)析:定值問題可用特殊情況先“探求”,如本題(1)若先考慮PAB是大圓,探求得定值4R2可為(1)的證明指明方向.
球面上任一點(diǎn)對(duì)球的直徑所張的角等于90°,這應(yīng)記作很重要的性質(zhì).
解析:先選其中兩條弦PA、PB,設(shè)其確定的平面截球得⊙O1,AB是⊙O1的直徑,連PO1并延長交⊙O1于D,PADB是矩形,PD2=AB2=PA2+PB2,然后只要證得PC和PD確定是大圓就可以了.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3
| ||
2 |
A、
| ||
B、π | ||
C、
| ||
D、2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶49中高三(下)第一次質(zhì)量抽測數(shù)學(xué)試卷(理科)(解析版) 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com