拋物線y=mx2的焦點(diǎn)與橢圓
y2
6
+
x2
2
=1的上焦點(diǎn)重合,則m=( 。
A、
1
8
B、
1
4
C、8
D、4
考點(diǎn):橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由橢圓方程求出橢圓的上焦點(diǎn)坐標(biāo),再求出拋物線的焦點(diǎn)坐標(biāo),由焦點(diǎn)相同求得m的值.
解答: 解:由
y2
6
+
x2
2
=1,得a2=6,b2=2,
∴c2-a2-b2=6-2=4,則c=2.
∴橢圓
y2
6
+
x2
2
=1的上焦點(diǎn)為(0,2),
∵由拋物線y=mx2,得x2=
1
m
y
,
又拋物線y=mx2的焦點(diǎn)與橢圓
y2
6
+
x2
2
=1的上焦點(diǎn)重合,
則m>0,
2p=
1
m
,
p
2
=
1
4m

1
4m
=2
,m=
1
8

故選:A.
點(diǎn)評(píng):本題考查了橢圓的簡單幾何性質(zhì),考查了拋物線的焦點(diǎn)的求法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題的否定為假命題的是( 。
A、?x∈R,sin2x+cos2x=1
B、任意一個(gè)四邊形的四個(gè)頂點(diǎn)共圓
C、所有能被3整除的整數(shù)都是奇數(shù)
D、?x∈R,x2+2x+2≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2014=3(a1+a3+a5+…+a2013),a1a2a3=8,則log2a2014的值為( 。
A、2012B、2013
C、2014D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為橢圓
x2
16
+
y2
12
=1上的點(diǎn),F(xiàn)1、F2為其兩焦點(diǎn),則使∠F1PF2=90°的點(diǎn)P有(  )
A、4個(gè)B、2個(gè)C、1個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點(diǎn)一個(gè)焦點(diǎn)為F1(0.-2
2
)橢圓上的點(diǎn)到點(diǎn)F1的最短距離3-2
2

(1)求橢圓的方程;
(2)是否存在直線l,使l與橢圓交于A、B,且線段AB恰好被直線x=-
1
2
平分,若存在,求出直線l的傾斜角α的取值范圍;若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
3
2
,前n項(xiàng)和為Sn,且滿足2an+1+Sn=3(n∈N*).
(Ⅰ)求a2及an;
(Ⅱ)求證:anSn
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax
x2-1
(a>0).
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在(-1,1)上的單調(diào)性并證明;
(3)若函數(shù)的定義域和值域同時(shí)為[-
1
2
1
2
],求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求以下函數(shù)的反函數(shù):
(1)y=-
3
x
;
(2)y=
3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)
x-x0
>0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”,則f(x)=x2-6x+4lnx的“類對(duì)稱點(diǎn)”的橫坐標(biāo)是( 。
A、1
B、
2
C、e
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案