已知變量x,y滿足不等式組
x+2y-1≥0
2x+y-2≤0
x-y+2≥0
,則z=2x+2y的最小值為(  )
A、
5
2
B、2
C、3
32
D、3
3
1
2
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合以及指數(shù)函數(shù)的圖象和性質(zhì),結(jié)合基本不等式即可得到結(jié)論.
解答: 解:如圖,點(diǎn)(x,y)所滿足的區(qū)域即為△ABC,
其中A(-1,1),B(0,2),C(1,0),
可見,z=2x+2y取得最小值的點(diǎn)一定在線段AC上,
z=2x+2y=21-2y+2y=
2
(2y)2
+
2y
2
+
2y
2
≥3
3
1
2
,(當(dāng)且僅當(dāng)x=-
1
3
,y=
2
3
時(shí)等號(hào)成立),
故選:D.
點(diǎn)評(píng):本題主要考查基本不等式的應(yīng)用,利用數(shù)形結(jié)合確定點(diǎn)的位置是解決本題的關(guān)鍵,綜合性較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2對(duì)任意的x∈[a,a+l],不等式f(x+a)≥4f(x)恒成立,則實(shí)數(shù)a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

《張丘建算經(jīng)》卷上第22題--“女子織布”問題:某女子善于織布,一天比一天織得快,而且每天增加的數(shù)量相同.已知第一天織布5尺,30天共織布390尺,則該女子織布每天增加( 。
A、
4
7
B、
16
29
C、
8
15
D、
16
31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
n
m
,Sm=
m
n
(m,n∈N*且m≠n),則下列各值中可以為Sn+m的值的是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=25,4an+1=4an-7(n∈N*),若其前n項(xiàng)和為Sn,則Sn的最大值為( 。
A、15
B、750
C、
765
4
D、
705
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-ln(x+1)的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績(jī)不低于76的為優(yōu)良.
(Ⅰ)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)將頻率視為概率.根據(jù)樣本估計(jì)總體的思想,在該校學(xué)生中任選3人進(jìn)行體質(zhì)健康測(cè)試,求至少有1人成績(jī)是“優(yōu)良”的概率;
(Ⅲ)從抽取的12人中隨機(jī)選取3人,記ξ表示成績(jī)“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2
3
tan2x+1)cos2x+1-2sin2x,x∈[0,
π
2
].
(Ⅰ)求f(x)在[0,
π
2
]的單調(diào)區(qū)間;
(Ⅱ)若f(x)-m≥0對(duì)于任意x∈[0,
π
2
]恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S4=8,S8=12,則a13+a14+a15+a16的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案