函數(shù)f(x)=在(-∞,+∞)上單調(diào),則a的取值范圍是________.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第二章第7課時練習卷(解析版) 題型:填空題
已知2a=3b=6c,若∈(k,k+1),則整數(shù)k的值是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第二章第5課時練習卷(解析版) 題型:解答題
作函數(shù)的y=圖象;
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第二章第4課時練習卷(解析版) 題型:解答題
已知奇函數(shù)f(x)的定義域為[-2,2],且在區(qū)間[-2,0]內(nèi)遞減,若f(1-m)+f(1-m2)<0,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第二章第4課時練習卷(解析版) 題型:填空題
對于定義在R上的函數(shù)f(x),給出下列說法:
①若f(x)是偶函數(shù),則f(-2)=f(2);
②若f(-2)=f(2),則函數(shù)f(x)是偶函數(shù);
③若f(-2)≠f(2),則函數(shù)f(x)不是偶函數(shù);
④若f(-2)=f(2),則函數(shù)f(x)不是奇函數(shù).
其中,正確的說法是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第二章第3課時練習卷(解析版) 題型:填空題
若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)在[0,+∞)上是增函數(shù),則a=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第二章第3課時練習卷(解析版) 題型:解答題
判斷函數(shù)f(x)=ex+在區(qū)間(0,+∞)上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第二章第2課時練習卷(解析版) 題型:解答題
求函數(shù)y=的定義域;
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第二章第13課時練習卷(解析版) 題型:解答題
某建筑公司要在一塊寬大的矩形地面(如圖所示)上進行開發(fā)建設(shè),陰影部分為一公共設(shè)施建設(shè)不能開發(fā),且要求用欄柵隔開(欄柵要求在一直線上),公共設(shè)施邊界為曲線f(x)=1-ax2(a>0)的一部分,欄柵與矩形區(qū)域的邊界交于點M、N,交曲線于點P,設(shè)P(t,f(t)).
(1)將△OMN(O為坐標原點)的面積S表示成t的函數(shù)S(t);
(2)若在t=處,S(t)取得最小值,求此時a的值及S(t)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com