已知函數(shù)f(x)=x3+ax2+bx+c,(a,b,c∈R)的一個零點為x=1,另外兩個零點分別可作為橢圓和雙曲線的離心率,則
b
a
的取值范圍是
 
考點:橢圓的應(yīng)用,雙曲線的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:把x=1,y=0代入函數(shù)解析式求得a+b+c的值;然后求得a,b和c的關(guān)系代入函數(shù)解析式消去c,整理成f(x)=(x-1)(x2+x+1)+a(x+1)(x-1)+b(x-1)的形式,設(shè)g(x)=x2+(a+1)x+1+a+b橢圓和雙曲線的離心率的范圍確定兩根的范圍確定g(0)>0,g(1)<0,最后利用線性規(guī)劃求得
b
a
的范圍.
解答: 解:依題意可知f(1)=1+a+b+c=0
∴a+b+c=-1
1+a+b+c=0得c=-1-a-b代入
f(x)=x3+ax2+bx-1-a-b
=(x-1)(x2+x+1)+a(x+1)(x-1)+b(x-1)
設(shè)g(x)=x2+(a+1)x+1+a+b
g(x)=0的兩根滿足0<x1<1 x2>1
g(0)=1+a+b>0
g(1)=3+2a+b<0
用線性規(guī)劃得
b
a
的取值范圍是(-2,-
1
2
)

故答案為:(-2,-
1
2
)
點評:本題主要考查了函數(shù)的零點和根的分布,圓錐曲線的共同特征,線性規(guī)劃的基礎(chǔ)知識.考查基礎(chǔ)知識的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C:y2=4x及圓M:(x-3)2+y2=1,
(1)過圓上一點P(3,1)的直線l1交拋物線C于A、B兩點,若線段AB被點P平分,求直線l1的方程;
(2)直線l2交拋物線C于E、F兩點,若線段EF的中點在圓M上,求
OE
OF
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+a
x
,a≠0.
(1)若a=1,用定義證明f(x)在[1,+∞)上單調(diào)遞增;
(2)判斷并證明f(x)在其定義域上的單調(diào)性,并求f(x)在區(qū)間[1,4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2+3x-2>0的解集為{x|1<x<b},
(1)求實數(shù)a,b的值;
(2)解關(guān)于x的不等式
x-b
ax-c
>0(c為實常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)θ∈(
4
,π),則關(guān)于x、y的方程
x2
sinθ
-
y2
cosθ
=1所表示的曲線是(  )
A、焦點在y軸上的雙曲線
B、焦點在x軸上的雙曲線
C、焦點在y軸上的橢圓
D、焦點在x軸上的橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的兩個頂點B、C的坐標(biāo)分別是(-1,0)和(2,0),頂點A在直線y=2x-1上運動,求△ABC的重心G的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=sin(-2x+
π
4
),給出以下四個論斷
①函數(shù)圖象關(guān)于直線x=-
8
對稱;
②函數(shù)圖象一個對稱中心是(
8
,0);
③函數(shù)f(x)在區(qū)間[-
π
8
,
8
]上是減函數(shù);
④當(dāng)且僅當(dāng)kπ+
8
<x<kπ+
8
(k∈Z)時,f(x)<0.
以上四個論斷正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P是橢圓
x2
16
+
y2
9
=1上的動點,作PD⊥y軸,D為垂足,則PD中點的軌跡方程為( 。
A、
x2
9
+
y2
16
=1
B、
x2
64
+
y2
9
=1
C、
x2
9
+
y2
4
=1
D、
x2
4
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,且(2a-c)cosB-bcosC=0.
(1)求∠B;
(2)設(shè)函數(shù)f(x)=-2cos(2x+B),將f(x)的圖象向左平移
π
12
后得到函數(shù)g(x)的圖象,求函數(shù)g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案