若f[g(x)]=6x+3,且g(x)=2x+1,則f(x)=

[  ]

A.3    B.3x    C.3(2x+1)    D.6x+1

答案:B
解析:

     


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014屆湖北武漢部分重點中學高二下學期期中考試理數(shù)學試卷(解析版) 題型:解答題

 已知實數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3x2+a x.

(Ⅰ) 當a=2時,求f (x)的極小值;

(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的極小值點與f (x)的極小值點相同,

求證:g(x)的極大值小于或等于10.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省溫州市高三上學期期初考試文科數(shù)學試卷(解析版) 題型:解答題

已知實數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3x2+ax.

(Ⅰ) 當a=2時,求f (x)的極小值;

(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點與f (x)的極小值點相同,

求證:g(x)的極大值小于等于10.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年遼寧省高三上學期第三次月考文科數(shù)學試卷 題型:解答題

已知實數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3x2ax

(Ⅰ) 當a=2時,求f (x)的極小值;

(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點與f (x)的極小值點相同,

求證:g(x)的極大值小于等于10.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)

已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.

(1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點PQ,且曲線yf(x)和yg(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個不同的實根,求實數(shù)k的取值范圍;

(2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省高三高考樣卷數(shù)學文卷 題型:解答題

(本題滿分15分) 已知實數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3x2ax

(Ⅰ) 當a=2時,求f (x)的極小值;

(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (bR) 的極小值點與f (x)的極小值點相同,

求證:g(x)的極大值小于等于10.

 

查看答案和解析>>

同步練習冊答案