若數(shù)列{an}滿足,則的值為(     )

  A.            B.           C.              D.,

 

【答案】

B

【解析】∵,∴,,,∴,,,…,故該數(shù)列周期為3,∴,故選B

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4x
4x+2

(1)試求f(
1
n
)+f(
n-1
n
)(n∈N*)
的值;
(2)若數(shù)列{an}滿足an=f(0)+f(
1
n
)
+f(
2
n
)
+…+f(
n-1
n
)
+f(1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿足bn=2n+1•an,Sn是數(shù)列{bn}前n項(xiàng)的和,是否存在正實(shí)數(shù)k,使不等式knSn>4bn對(duì)于一切的n∈N*恒成立?若存在指出k的取值范圍,并證明;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)若數(shù)列{bn}:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如數(shù)列cn:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí)
,則數(shù)列{cn}是公差為8的準(zhǔn)等差數(shù)列.設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準(zhǔn)等差數(shù)列;
(Ⅱ)求證:{an}的通項(xiàng)公式及前20項(xiàng)和S20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
x+1
,若數(shù)列{an}滿足:an>0,a1=1,an+1=[f(
an
)]2
(I)求數(shù)列{an}的通項(xiàng)公式數(shù)列an;
(II)若數(shù)列{an}的前n項(xiàng)和為Sn,證明:Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若數(shù)列{bn}:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如數(shù)列cn:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí)
,則數(shù)列{cn}是公差為8的準(zhǔn)等差數(shù)列.設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準(zhǔn)等差數(shù)列;
(Ⅱ)求證:{an}的通項(xiàng)公式及前20項(xiàng)和S20

查看答案和解析>>

同步練習(xí)冊(cè)答案