【題目】在平面直角坐標系中,設向量, ,其中為的兩個內角.
(1)若,求證: 為直角;
(2)若,求證: 為銳角.
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)滿足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且當0≤x1<x2≤1時,f(x1)≤f(x2),則f( )+f( )等于( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,它們所在平面互相垂直,FD⊥平面ABCD,且 .
(1)若∠BCD=60°,求證:BC⊥EF;
(2)若∠CBA=60°,求直線AF與平面FBE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線C:y2=4x,過焦點F斜率大于零的直線l交拋物線于A、B兩點,且與其準線交于點D.
(Ⅰ)若線段AB的長為5,求直線l的方程;
(Ⅱ)在C上是否存在點M,使得對任意直線l,直線MA,MD,MB的斜率始終成等差數列,若存在求點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前項和為,且.
(1)求證:數列為等比數列;
(2)設數列的前項和為,求證: 為定值;
(3)判斷數列中是否存在三項成等差數列,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題中
① 非零向量滿足,則的夾角為;
②
>0是的夾角為銳角的充要條件;
③若則必定是直角三角形;
④△ABC的外接圓的圓心為O,半徑為1,若,且,則向量在向量方向上的投影為.
以上命題正確的是 __________ (注:把你認為正確的命題的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體是由棱臺 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 , 平面 , .
(1)求證:平面 平面 ;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com