已知f(x)=x-(a>0),g(x)=2lnx+bx且直線y=2x-2與曲線y=g(x)相切.
(1)若對[1,+)內(nèi)的一切實數(shù)x,小等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)當a=l時,求最大的正整數(shù)k,使得對[e,3](e=2.71828是自然對數(shù)的底數(shù))內(nèi)的任意k個實數(shù)x1,x2,,xk都有成立;
(3)求證:

(1);(2)的最大值為
(3)當時,根據(jù)(1)的推導有,時,,即.令,得,化簡得,
。

解析試題分析:(1)設(shè)點為直線與曲線的切點,則有.     (*)
,.  (**)
由(*)、(**)兩式,解得.    2分
整理,得
,要使不等式恒成立,必須恒成立.   
設(shè),
時,,則是增函數(shù),
是增函數(shù),.5分
因此,實數(shù)的取值范圍是.      6分
(2)當時,,
上是增函數(shù),上的最大值為
要對內(nèi)的任意個實數(shù)都有
成立,必須使得不等式左邊的最大值小于或等于右邊的最小值,
時不等式左邊取得最大值,時不等式右邊取得最小值.
,解得
因此,的最大值為.                10分
(3)證明(法一):當時,根據(jù)(1)的推導有,時,,
.        11分
,得,   
化簡得,        13分
.    14分
(法二)數(shù)學歸納法:當時,左邊=,右邊=,
根據(jù)(1)的推導有,時,,即
,得,即
因此,時不等式成立.                    11分
(另解:,,即.)
假設(shè)當時不等式成立,即

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的解析式及減區(qū)間;
(2)若的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù)
(I)若曲線在點處的切線與直線垂直,求a的值;
(II)求函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)已知是函數(shù)的一個極值點. 
(Ⅰ)求的值;
(Ⅱ)當,時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求曲線在點處的切線方程;
(2)設(shè),如果過點可作曲線的三條切線,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知 
⑴若的極值點,求實數(shù)值。
⑵若對都有成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本小題滿分12分)設(shè)M是由滿足下列條件的函數(shù)f (x)構(gòu)成的集合:①方程f (x)一x=0有實根;②函數(shù)的導數(shù)滿足0<<1.
(1)若函數(shù)f(x)為集合M中的任意一個元素,證明:方程f(x)一x=0只有一個實根;
(2)判斷函數(shù)是否是集合M中的元素,并說明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個元素,對于定義域中任意,
證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)設(shè)函數(shù)
(1)若
(2)若

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:函數(shù),其中.
(Ⅰ)若的極值點,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若上的最大值是,求的取值范圍.

查看答案和解析>>

同步練習冊答案