已知橢圓的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,橢圓上一點(diǎn)M
滿足.
(1)求橢圓的方程;
(2)若直線L:y=與橢圓恒有不同交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k的范圍.

(1). (2)

解析試題分析:(1)設(shè)F1(-c,0),F(xiàn)2(c,0),
利用即可得到c的方程,所以, 
再根據(jù)點(diǎn)M在橢圓上得到另一方程,即可確定得到橢圓方程.
(2)由.
設(shè),利用,得到,再結(jié)合,由
得解.
試題解析:(1)設(shè)F1(-c,0),F(xiàn)2(c,0)


.        2分
 ①   又點(diǎn)M在橢圓上 ②
由①代入②得,整理為:,
,, .     4分
∴橢圓方程為.          5分
(2)由.     7分
設(shè)

.    10分

.         13分
考點(diǎn):橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,不等式的解法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn),圓是以為圓心,半徑為的圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑所在的直線交于點(diǎn).
(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(Ⅱ)已知,是曲線上的兩點(diǎn),若曲線上存在點(diǎn),滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,橢圓的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)是橢圓長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過作方向向量的直線交橢圓、兩點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為,且橢圓經(jīng)過點(diǎn)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)線段是橢圓過點(diǎn)的弦,且,求內(nèi)切圓面積最大時(shí)實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知中心在原點(diǎn)的橢圓的離心率,一條準(zhǔn)線方程為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若以>0)為斜率的直線與橢圓相交于兩個(gè)不同的點(diǎn),且線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)訄A過定點(diǎn)P(1,0),且與定直線l:x=-1相切,點(diǎn)C在l上.
(1)求動(dòng)圓圓心的軌跡M的方程;
(2)設(shè)過點(diǎn)P,且斜率為-的直線與曲線M相交于A、B兩點(diǎn). 問:△ABC能否為正三角形?若能,求點(diǎn)C的坐標(biāo);若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓E:=1()過點(diǎn)M(2,), N(,1),為坐標(biāo)原點(diǎn)
(I)求橢圓E的方程;
(II)是否存在以原點(diǎn)為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓E的一個(gè)焦點(diǎn)為圓的圓心.
⑴求橢圓E的方程;
⑵設(shè)P是橢圓E上一點(diǎn),過P作兩條斜率之積為的直線,當(dāng)直線都與圓相切時(shí),求P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案