【題目】某研究性學(xué)習(xí)小組對晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,下面是3月1日至5日每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù)的詳細(xì)記錄:

(1)根據(jù)3月2日至3月4日的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

日期

3月1日

3月2日

3月3日

3月4日

3月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均小于2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

參考公式:,

【答案】(1) (2)見解析

【解析】

1)先求出溫差x和發(fā)芽數(shù)y的平均值,即得到樣本中心點(diǎn),利用最小二乘法得到線性回歸方程的系數(shù),根據(jù)樣本中心點(diǎn)在線性回歸直線上,得到a值,即得線性回歸方程;(2)分別驗(yàn)證當(dāng)x10x8時(shí)的y值,驗(yàn)證|y23|2|y16|2可得結(jié)論.

1)由數(shù)據(jù),求得,,

, , .由公式,求得,

所以y關(guān)于x的線性回歸方程為

2)當(dāng)x10時(shí), |2223|2;

同樣,當(dāng)x8時(shí),,|1716|2

所以,該研究所得到的線性回歸方程是可靠的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱中,的中點(diǎn),是線段上的動(dòng)點(diǎn),且.

(1)若,求證:;

(2)求二面角的余弦值;

(3)若直線與平面所成角的大小為,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) , .

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),函數(shù)的圖像上存在點(diǎn)在函數(shù)的圖像的下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于給定的正整數(shù),若數(shù)列滿足對任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.

(1)證明:等差數(shù)列是“數(shù)列”;

(2)若數(shù)列既是“數(shù)列”,又是“數(shù)列”,證明: 是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線C:ρ=2sinθ,A、B為曲線C的兩點(diǎn),以極點(diǎn)為原點(diǎn),極軸為x軸非負(fù)半軸的直角坐標(biāo)中,曲線E:是參數(shù))上一點(diǎn)P,則∠APB的最大值為 (   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;

() 證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中四邊形為正方形,分別為的中點(diǎn).在此幾何體中,給出下列結(jié)論,其中正確的結(jié)論是( )

A.平面平面B.直線平面

C.直線平面D.直線平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分已知在四棱錐,底面是矩形,,平面,分別是線段,的中點(diǎn).

1判斷并說明上是否存在點(diǎn),使得平面?若存在,求出的值;若不

存在,請說明理由

2與平面所成的角為,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某集團(tuán)為了獲得更大的收益,每年要投入一定的資金用于廣告促銷.經(jīng)調(diào)查投入廣告費(fèi)t(百萬元),可增加銷售額約為-t25t(百萬元)(0t5) (注:收益=銷售額-投放)

1)若該公司將當(dāng)年的廣告費(fèi)控制在3百萬元之內(nèi),則應(yīng)投入多少廣告費(fèi),才能使該公司由此獲得的收益最大?

2)現(xiàn)該公司準(zhǔn)備共投入3百萬元,分別用于廣告促銷和技術(shù)改造.經(jīng)預(yù)測,每投入技術(shù)改造費(fèi)x(百萬元),可增加的銷售額約為-x3x23x(百萬元).請?jiān)O(shè)計(jì)一個(gè)資金分配方案,使該公司由此獲得的收益最大.

查看答案和解析>>

同步練習(xí)冊答案