設x,y滿足約束條件
x+y-1≥0
x-y-1≤0
x-3y+3≥0
,則z=x+2y的最大值為( 。
A、8B、7C、2D、1
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答: 解:作出不等式對應的平面區(qū)域,
由z=x+2y,得y=-
1
2
x+
z
2

平移直線y=-
1
2
x+
z
2
,由圖象可知當直線y=-
1
2
x+
z
2
經(jīng)過點A時,直線y=-
1
2
x+
z
2
的截距最大,此時z最大.
x-y-1=0
x-3y+3=0
,得
x=3
y=2
,
即A(3,2),
此時z的最大值為z=3+2×2=7,
故選:B.
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設雙曲線C經(jīng)過點(2,2),且與
y2
4
-x2=1具有相同漸近線,則C的方程為
 
;漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F為拋物線C:y2=3x的焦點,過F且傾斜角為30°的直線交C于A,B兩點,O為坐標原點,則△OAB的面積為( 。
A、
3
3
4
B、
9
3
8
C、
63
32
D、
9
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F為拋物線C:y2=3x的焦點,過F且傾斜角為30°的直線交于C于A,B兩點,則|AB|=( 。
A、
30
3
B、6
C、12
D、7
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點M(x0,1),若在圓O:x2+y2=1上存在點N,使得∠OMN=45°,則x0的取值范圍是(  )
A、[-1,1]
B、[-
1
2
1
2
]
C、[-
2
2
]
D、[-
2
2
,
2
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,圓O的半徑為1,A是圓上的定點,P是圓上的動點,角x的始邊為射線OA,終邊為射線OP,過點P做直線OA的垂線,垂足為M,將點M到直線OP的距離表示為x的函數(shù)f(x),則y=f(x)在[0,π]的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū),規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80m,經(jīng)測量,點A位于點O正北方向60m處,點C位于點O正東方向170m處(OC為河岸),tan∠BCO=
4
3

(1)求新橋BC的長;
(2)當OM多長時,圓形保護區(qū)的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a1=1,an+1=
a
2
n
-2an+2
+b(n∈N*
(Ⅰ)若b=1,求a2,a3及數(shù)列{an}的通項公式;
(Ⅱ)若b=-1,問:是否存在實數(shù)c使得a2n<c<a2n+1對所有的n∈N*成立,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x+2cosx-
3
在區(qū)間[0,
π
2
]上的最大值是
 

查看答案和解析>>

同步練習冊答案