【題目】下列說(shuō)法正確的是( )
A.若“,則”的逆命題為真命題
B.命題“,”的否定是“,”
C.若,則“”是“”的必要不充分條件
D.函數(shù)的最小值為2
【答案】C
【解析】
A:寫出原命題的逆命題,根據(jù)正切函數(shù)的性質(zhì)進(jìn)行判斷即可;
B:根據(jù)特稱命題的否定的規(guī)定進(jìn)行判斷即可;
C:根據(jù)充分不必要的定義進(jìn)行判斷即可;
D:利用基本不等式,結(jié)合等號(hào)成立的條件進(jìn)行判斷即可.
A:若“,則”的逆命題為:若,則.
由,顯然不一定有,故該說(shuō)法是不正確的;
B:命題“,”的否定是“,”,故該說(shuō)法是不正確的;
C:由或,顯然由不一定能推出,但是由一定能推出,故該說(shuō)法是正確的;
D:,當(dāng)且僅當(dāng)時(shí)取等號(hào),即時(shí)取等號(hào),而方程無(wú)實(shí)數(shù)根,故不等式(*)不能取等號(hào),即成立 ,因此函數(shù)的最小值不能為2.(或者由可知:函數(shù)的最小值不能為2.)
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD所在平面垂直于直角梯形ABPE所在平面,EP,BP=2,AD=AE=1,AE⊥EP,AE∥BP,G,F分別是BP,BC的中點(diǎn).
(1)求證:平面AFG∥平面PCE;
(2)求四棱錐D﹣ABPE的體積與三棱錐P﹣BCD的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且離心率為.直線與軸正半軸和軸分別交于點(diǎn)、,與橢圓分別交于點(diǎn)、,各點(diǎn)均不重合且滿足 ,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,試證明:直線過(guò)定點(diǎn)并求此定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某健身館在2019年7、8兩月推出優(yōu)惠項(xiàng)目吸引了一批客戶.為預(yù)估2020年7、8兩月客戶投入的健身消費(fèi)金額,健身館隨機(jī)抽樣統(tǒng)計(jì)了2019年7、8兩月100名客戶的消費(fèi)金額,分組如下:(單位:元),得到如圖所示的頻率分布直方圖:
(1)若把2019年7、8兩月健身消費(fèi)金額不低于800元的客戶,稱為“健身達(dá)人”,經(jīng)數(shù)據(jù) 處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請(qǐng)補(bǔ)全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“健身達(dá)人”與性別有關(guān)?
健身達(dá)人 | 非健身達(dá)人 | 總計(jì) | |
男 | 10 | ||
女 | 30 | ||
總計(jì) |
(2)為吸引顧客,在健身項(xiàng)目之外,該健身館特別推出健身配套營(yíng)養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.
方案一:每滿800元可立減100元;
方案二:金額超過(guò)800元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折.
若某人打算購(gòu)買1000元的營(yíng)養(yǎng)品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
(3)在(2)中的方案二中,金額超過(guò)800元可抽獎(jiǎng)三次,假設(shè)三次中獎(jiǎng)結(jié)果互不影響,且三次中獎(jiǎng)的概率為,記為銳角的內(nèi)角,
求證:
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有兩個(gè)極值點(diǎn)(為自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)的取值范圍;
(2)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)已知函數(shù)的兩個(gè)零點(diǎn)為.
(1)求實(shí)數(shù)m的取值范圍;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的雙曲線C的漸近線方程為y=±2x,且該雙曲線過(guò)點(diǎn)(2,2).
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)點(diǎn)A為雙曲線C上任一點(diǎn),F1F2分別為雙曲線的左右焦點(diǎn),過(guò)其中的一個(gè)焦點(diǎn)作∠F1AF2的角平分線的垂線,垂足為點(diǎn)P,求點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,直線與拋物線C相切于點(diǎn)P,過(guò)點(diǎn)P作拋物線C的割線PQ,割線PQ與拋物線C的另一交點(diǎn)為Q,A為PQ的中點(diǎn).過(guò)A作y軸的垂線與y軸交于點(diǎn)H,與直線l相交于點(diǎn)N,M為線段AN的中點(diǎn).
(1)求拋物線C的方程;
(2)在x軸上是否存在一點(diǎn)T,使得當(dāng)割線PQ變化時(shí),總有為定值?若存在,求出該點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程為,是橢圓上的一點(diǎn),且在第一象限內(nèi),過(guò)且斜率等于-1的直線與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為.
(1)證明:直線的斜率為定值;
(2)求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com