如圖,已知四邊形均為正方形,平面平面.

(1)求證:平面;
(2)求二面角的大小.

(1)詳見解析;(2).

解析試題分析:(1)要證直線與平面垂直,只須證明這條直線與平面內(nèi)的兩條相交直線垂直或證明這條直線是兩垂直平面中一個(gè)平面內(nèi)的一條直線,且這條直線垂直于這兩個(gè)平面的交線即可.本題屬于后者,由平面平面且交線為,而平面,所以問題得證;(2)解決空間角最有效的工具是向量法,先以點(diǎn)為坐標(biāo)原點(diǎn),利用已有的垂直關(guān)系建立空間直角坐標(biāo)系,為計(jì)算的方便,不妨設(shè)正方形的邊長(zhǎng)為1,然后標(biāo)出有效點(diǎn)與有效向量的坐標(biāo),易知平面的法向量為,再利用待定系數(shù)法求出另一平面的法向量,接著計(jì)算出這兩個(gè)法向量夾角的余弦值,根據(jù)二面角的圖形與計(jì)算出的余弦值,確定二面角的大小即可.
試題解析:(1)因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/c4/9/bsmbk2.png" style="vertical-align:middle;" />平面,且平面平面
又因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/e4/b/baocd1.png" style="vertical-align:middle;" />為正方形,所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fd/2/bkogd1.png" style="vertical-align:middle;" />平面,所以平面       4分
(2)以為坐標(biāo)原點(diǎn),如圖建立空間直角坐標(biāo)系


所以平面的法向量為   5分
設(shè)平面的法向量為
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/56/6/wwqb9.png" style="vertical-align:middle;" />

,則       6分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0b/e/uqzb7.png" style="vertical-align:middle;" />
所以二面角的大小為       8分.
考點(diǎn):1.面面垂直的性質(zhì);2.線面垂直的證明;3.空間角的計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P­ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4,EPA的中點(diǎn).
 
(1)求證:DE∥平面PBC;
(2)求證:DE⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,∥AE,,分別為的中點(diǎn).

(1)求異面直線所成角的大;
(2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面平面,四邊形為矩形,的中點(diǎn),

(1)求證:;
(2)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐,,,,,,,上一點(diǎn),是平面的交點(diǎn).

(1)求證:;
(2)求證:;
(3)求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在棱長(zhǎng)為2的正方體中,的中點(diǎn).
(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知的直徑,點(diǎn)、上兩點(diǎn),且,為弧的中點(diǎn).將沿直徑折起,使兩個(gè)半圓所在平面互相垂直(如圖2).

(Ⅰ)求證:;
(Ⅱ)在弧上是否存在點(diǎn),使得平面?若存在,試指出點(diǎn)的位置;若不存在,請(qǐng)說明理由;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,矩形中,,,分別為、邊上的點(diǎn),且,,將沿折起至位置(如圖2所示),連結(jié)、、,其中.

(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且

(Ⅰ)求證:EF∥平面BDC1
(Ⅱ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案