設(shè)a>0,定點F(a,0),直線l:x=-a交x軸于點H,點B是l上的動點,過點B垂直于l的直線與線段BF的垂直平分線交于點M.
(I)求點M的軌跡C的方程;
(II)設(shè)直線BF與曲線C交于P,Q兩點,證明:向量
HP
、
HQ
HF
的夾角相等.
(I)連接MF,依題意有|MF|=|MB|,
所以動點M的軌跡是以F(a,0)為焦點,直線l:x=-a為準(zhǔn)線的拋物線,
所以C的方程為y2=4ax.(5分)
(II)設(shè)P,Q的坐標(biāo)分別為(x1,y1),(x2,y2),
依題意直線BF的斜率存在且不為0,設(shè)直線BF的方程為y=k(x-a)(k≠0),
將其與C的方程聯(lián)立,消去y得k2x2-2a(k2+2)x+a2k2=0
故x1x2=a2
記向量
HP
HF
的夾角為θ1,
HQ
HF
的夾角為θ2,其中0<θ1,θ2<π,
因為
HP
=(x1+a,y1),
HF
=(2a,0)
,
所以cosθ1=
HP
HF
|HP|
|HF|
=
2ax1+2a2
2a
(x1+a)2+
y21
=
x1+a
x21
+6ax1+a2

同理cosθ2=
x2+a
x22
+6ax2+a2
=
a2
x1
+a
a4
x21
+6
a3
x1
+a2
=
x1+a
x21
+6ax1+a2

因為cosθ1=cosθ2,且0<θ1,θ2<π,
所以θ12,即
HP
HQ
HF
的夾角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,定點F(a,0),直線l:x=-a交x軸于點H,點B是l上的動點,過點B垂直于l的直線與線段BF的垂直平分線交于點M.
(I)求點M的軌跡C的方程;
(II)設(shè)直線BF與曲線C交于P,Q兩點,證明:向量
HP
、
HQ
HF
的夾角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市西城區(qū)2007年高三數(shù)學(xué)(理)抽樣測試 題型:044

設(shè)a>0,定點F(a,0),直線:l∶x=-a交x軸于點A,點B是l上的動點,過點B垂直于l的直線與線段BF的垂直平分線交于點M.

(1)

求點M的軌跡C的方程;

(2)

設(shè)直線BF與曲線C交于點P、Q兩點,證明:向量的夾角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年北京市西城區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)a>0,定點F(a,0),直線l:x=-a交x軸于點H,點B是l上的動點,過點B垂直于l的直線與線段BF的垂直平分線交于點M.
(I)求點M的軌跡C的方程;
(II)設(shè)直線BF與曲線C交于P,Q兩點,證明:向量、的夾角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年北京市西城區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)a>0,定點F(a,0),直線l:x=-a交x軸于點H,點B是l上的動點,過點B垂直于l的直線與線段BF的垂直平分線交于點M.
(I)求點M的軌跡C的方程;
(II)設(shè)直線BF與曲線C交于P,Q兩點,證明:向量、的夾角相等.

查看答案和解析>>

同步練習(xí)冊答案