設(shè)△ABC重心為G,∠A,∠B,∠C的對(duì)邊分別為a,b,c,若a
GA
+
3
5
b
GB
+
3
7
c
GC
=
0
,則∠C=
 
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:△ABC重心為G,可得
GA
+
GB
+
GC
=
0
,代入a
GA
+
3
5
b
GB
+
3
7
c
GC
=
0
,整理為(
3
5
b-a)
GB
=(a-
3
7
c)
GC
.由G為△ABC重心,可知:
GB
GC
不可能共線.可得
3
5
b-a=a-
3
7
c
=0,再利用余弦定理即可得出.
解答: 解:∵△ABC重心為G,
GA
+
GB
+
GC
=
0
,
GA
=-(
GB
+
GC
)

∵a
GA
+
3
5
b
GB
+
3
7
c
GC
=
0
,
∴-a(
GB
+
GC
)
+
3
5
b
GB
+
3
7
c
GC
=
0

化為(
3
5
b-a)
GB
=(a-
3
7
c)
GC
,
∵G為△ABC重心,
GB
GC
不可能共線.
3
5
b-a=a-
3
7
c
=0,
a=
3
7
c,b=
5
7
c.
由余弦定理可得:cosC=
a2+b2-c2
2ab
=
(
3
7
c)2+(
5
7
c)2-c2
3
7
5
7
c
=-
1
2
,
∵C∈(0,π),
C=
3

故答案為:
3
點(diǎn)評(píng):本題考查了三角形重心性質(zhì)、余弦定理、向量共線定理,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
4
+y2=1
兩個(gè)焦點(diǎn)分別是F1,F(xiàn)2,點(diǎn)P是橢圓上任意一點(diǎn),則
PF1
PF2
的取值范圍是( 。
A、[1,4]
B、[1,3]
C、[-2,1]
D、[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩個(gè)頂點(diǎn)A、B∈平面α,下面四項(xiàng):①△ABC的內(nèi)心;②△ABC的外心;③△ABC的垂心;④△ABC的重心.其中因其在α內(nèi)可判定C在α內(nèi)的是( 。
A、②③B、②④C、①③D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M到定點(diǎn)(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點(diǎn)軌跡為拋物線,并求出其軌跡方程;
(2)大家知道,過圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點(diǎn)).受此啟發(fā),研究下面問題:
①過(1)中的拋物線的頂點(diǎn)O任意作互相垂直的弦OA、OB,問:弦AB是否經(jīng)過一個(gè)定點(diǎn)?若經(jīng)過,請(qǐng)求出定點(diǎn)坐標(biāo),否則說明理由;
②研究:對(duì)于拋物線y2=2px(p>0)上頂點(diǎn)以外的定點(diǎn)是否也有這樣的性質(zhì)?請(qǐng)?zhí)岢鲆粋(gè)一般的結(jié)論,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x-1)lnx的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x3-6x的“臨界點(diǎn)”是( 。
A、1B、-1C、-1和1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線兩直線l1:xcosα+
1
2
y-1=0;l2:y=xsin(a+
π
6
),△ABC中,內(nèi)角A,B,C對(duì)邊分別為a,b,c,a=2
3
,c=4,且當(dāng)a=A時(shí),兩直線恰好相互垂直;
(Ⅰ)求A值;
(Ⅱ)求b和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
1
3
x3+
1
2
(b-1)x2-bx,x∈R,當(dāng)f(x)在R上有且僅有一個(gè)零點(diǎn)時(shí),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)某校高二年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取N名學(xué)生作為樣本,得到這N名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如圖:
分組頻數(shù)頻率
[3,6)10m
[6,9)np
[9,12)4q
[12,15)20.05
合計(jì)N1
(1)求出表中N,p及圖中a的值;
(2)請(qǐng)根據(jù)題中的頻率分布直方圖,估計(jì)樣本的中位數(shù)與平均數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案