設(shè)-5<a<5,集合M={x∈N|2x-(a+5)x-10=0}.若M≠?,則滿足條件的所有實數(shù)a的和等于( 。
A、-
3
5
B、-
1
10
C、
1
10
D、4
考點:元素與集合關(guān)系的判斷
專題:集合
分析:先由條件判斷x≥4,由于函數(shù)的導(dǎo)數(shù)大于零,可得f(x)在x≥4時單調(diào)增,故至多只有一個零點.分別令
f(4)=0、f(5)=0、f(6)=0、f(7)=0,求得a的值,x≥7時,f(x)恒大于0,不會有零點.最后把求得的a值相加,即得所求.
解答: 解:解:∵-5<a<5,∴0<a+5<10,又∵x為自然數(shù),且2x=(a+5)x+10≥10,∴x≥4.
令f(x)=2x-(a+5)x-10 得:f'(x)=2x ln2-(a+5)≥16ln2-(a+5)>0,
即f(x)在x∈(4,+∞)時單調(diào)增,故至多只有一個零點.
令f(4)=6-4(a+5)=0,解得 a=-
7
2
;
f(5)=22-5(a+5)=0,解得:a=-
3
5
;
f(6)=54-6(a+5)=0,得:a=4;
f(7)=118-7(a+5)>0,x≥7時,f(x)恒大于0,不會有零點.
因此滿足條件的a有3個,其和為-
7
2
-
3
5
+4=-
1
10

故選:B.
點評:本題考查了根的存在性及根的個數(shù)判斷,求函數(shù)的導(dǎo)數(shù),分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

第三賽季甲、乙兩名運動員每場比賽得分的莖葉圖如圖所示,則下列說法中正確的是( 。
A、甲、乙兩人單場得分的最高分都是9分
B、甲、乙兩人單場得分的中位數(shù)相同
C、甲運動員的得分更集中,發(fā)揮更穩(wěn)定
D、乙運動員的得分更集中,發(fā)揮更穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABCD中,E,F(xiàn)分別為AB,CD的中點,過EF任作一個平面α分別與直線BC,AD相交于點G,H,有下列三個結(jié)論,其中正確的個數(shù)是( 。
①對于任意的平面α,都有直線GF,EH,BD相交于同一點;
②存在一個平面α0,使得點G在線段BC上,點H在線段AD的延長
線上;
③對于任意的平面α,它把三棱錐的體積分成相等的兩部分.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我國的人口普查每十年進(jìn)行一次,在第五次(2000年11月1日開始)人口普查時我國人口約為13億,并發(fā)現(xiàn)我國人口的年平均增長率約為1%,如果按照這種速度增長,在我國開始第七次(2020年11月1日開始)普查時的人口數(shù)約為(  )億.
A、13(1+20×1%)
B、13(1+19×1%)
C、13(1+1%)20
D、13(1+1%)19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x+2y+1≥0
3x-y+3≥0
,若(-1,0)是使mx+y取得最大值的可行解,則實數(shù)m的取值范圍是(  )
A、m≤3
B、m≤-3
C、m≥-
1
2
D、m≥
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)和橢圓C2:x2+y2=r2都過點(0,-1),且橢圓C1的離心率為
3
2

(Ⅰ) 求橢圓C1和C2的方程;
(Ⅱ) 如圖,A,B分別為橢圓C1的左右頂點,P(x0,y0)為圓C2上的動點.過點P作圓C2的切線l,交橢圓C1與不同的兩點C,D,且l與x軸的交點為M,直線AC與直線DB的交點為N.
(i) 求切線l的方程;
(ii) 問點M,N的橫坐標(biāo)之積是否為定值?若是定值,求出此定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩矩形ABCD、ABEF所在平面互相垂直,DE與平面ABCD及平面ABEF所成角分別為30°、45°,M、N分別為DE與DB的中點,且MN=1.線段AB的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),g(x)是偶函數(shù),f(x)+g(x)=2x-x2,則f(1)+g(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}滿足:a1=
1
2
,a2
=1,an+1=an-
1
4
an-1
(n≥2);an=
bn
2n
(n∈N*).
(Ⅰ)計算b1,b2,b3,并求數(shù)列{bn},{an}的通項公式;
(Ⅱ)證明:對于任意的n>3,都有a1+a2+a3>a4+a5+…+an

查看答案和解析>>

同步練習(xí)冊答案