對于任意定義在R上的函數(shù)f(x),若實數(shù)x0滿足f(x0)=x0,則稱x0是函數(shù)f(x)的一個不動點.若二次函數(shù)f(x)=x2-ax+1沒有不動點,則實數(shù)a的取值范圍是
 
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:不動點實際上就是方程f(x0)=x0的實數(shù)根.二次函數(shù)f(x)=x2-ax+1沒有不動點,是指方程x=x2-ax+1無實根.然后根據(jù)根的判別式△<0解答即可.
解答: 解:根據(jù)題意,得x=x2-ax+1無實數(shù)根,
即x2+(-a-1)x+1=0無實數(shù)根,
∴△=(-a-1)2-4<0,
解得:-3<a<1;
故答案是:-3<a<1.
點評:本題考查了二次函數(shù)圖象上點的坐標特征、函數(shù)與方程的綜合運用.解答該題時,借用了一元二次方程的根的判別式與根這一知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知a≥b>0,求證:2a3-b3≥2ab2-a2b.
(Ⅱ)設(shè)a,b,c,x,y,z是正數(shù),且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,求
a+b+c
x+y+z
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下命題(其中a,b表示直線,α表示平面)
①若a∥b,b?α,則a∥α   
②若a∥α,b∥α,則a∥b
③若a∥b,b∥α,則a∥α   
④若a∥α,b?α,則a∥b
其中正確命題的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分解因式x13-2x12x2-x1+2x2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4男3女站成一排照相,要求男女各不相鄰,則共有
 
 種不同的站法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)為考察生產(chǎn)同種產(chǎn)品的甲、乙兩條生產(chǎn)線的產(chǎn)品合格率,各抽取100件產(chǎn)品檢驗后得到列聯(lián)表:是否有99%以上的把握認為產(chǎn)品合格率與生產(chǎn)線有關(guān)系?

 合格不合格總計
甲線973100
乙線955100
總計1928200
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

解:∵K2=
 
 
,所以
 
95%以上的把握認為產(chǎn)品合格率與生產(chǎn)線有關(guān).(填有、沒有)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公比為q的等比數(shù)列,|q|>1,令bn=an+1(n=1,2,3…),若數(shù)列{bn}有連續(xù)四項在集合{-53,-23,19,37,82}中,則q2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x2-4x|-a有三個零點,則實數(shù)a的值是
 

查看答案和解析>>

同步練習(xí)冊答案