【題目】如圖是一幾何體的平面展開圖,其中四邊形ABCD為矩形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面4個結(jié)論:
直線BE與直線CF異面;直線BE與直線AF異面;直線平面PBC;平面平面PAD.
其中正確的結(jié)論個數(shù)為
A. 4個
B. 3個
C. 2個
D. 1個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看第23屆平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
(1)根據(jù)上表數(shù)據(jù),能否有的把握認(rèn)為,是否收看開幕式與性別有關(guān)?
(2)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會及冰雪項(xiàng)目宣傳介紹,求恰好選到一名男生一名女生的概率.
附: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對某地區(qū)的一種傳染病與飲用水進(jìn)行抽樣調(diào)查發(fā)現(xiàn):飲用干凈水得病5人,不得病50人;飲用不干凈水得病9人,不得病22人。
(1)作出2×2列聯(lián)表
(2)能否有90%的把握認(rèn)為該地區(qū)中得傳染病與飲用水有關(guān)?
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形為矩形, ,為的中點(diǎn),將沿折起,得到四棱錐,設(shè)的中點(diǎn)為,在翻折過程中,得到如下有三個命題:
①平面,且的長度為定值;
②三棱錐的最大體積為;
③在翻折過程中,存在某個位置,使得.
其中正確命題的序號為__________.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓恒過點(diǎn),且與直線相切.
(1)求圓心的軌跡方程;
(2)若過點(diǎn)的直線交軌跡于, 兩點(diǎn),直線, (為坐標(biāo)原點(diǎn))分別交直線于點(diǎn), ,證明:以為直徑的圓被軸截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地發(fā)生地質(zhì)災(zāi)害,使當(dāng)?shù)氐淖詠硭艿搅宋廴,某部門對水質(zhì)檢測后,決定往水中投放一種藥劑來凈化水質(zhì).已知每投放質(zhì)量為m的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升)滿足,其中,當(dāng)藥劑在水中釋放的濃度不低于4(毫克/升)時稱為有效凈化;當(dāng)藥劑在水中釋放的濃度不低于4(毫克/升)且不高于10(毫克/升)時稱為最佳凈化.
(1)如果投放的藥劑質(zhì)量為m=4,試問自來水達(dá)到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質(zhì)量為m,為了使在7天(從投放藥劑算起包括7天)之內(nèi)的自來水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司研發(fā)芯片耗費(fèi)資金2千萬元,現(xiàn)在準(zhǔn)備投入資金進(jìn)行生產(chǎn).經(jīng)市場調(diào)查與預(yù)測,生產(chǎn)A芯片的毛收入(平萬元)與投入的資金x(千萬元)成正比,已知每投入1千萬元,獲得毛收入0.25千萬元;生產(chǎn)B芯片的毛收入(千萬元)與投入的資金x(千萬元)的函數(shù)關(guān)系式為,其圖像如圖所示.
(1)試分別求出生產(chǎn)A,B兩種芯片的毛收入與投入資金的函數(shù)關(guān)系式.
(2)如果公司只生產(chǎn)一種芯片,生產(chǎn)哪種芯片毛收入更大?
(3)現(xiàn)在公司準(zhǔn)備投入4億元資金同時生產(chǎn)A,B兩種芯片,設(shè)投入x千萬元生產(chǎn)B芯片,用表示公司所獲利潤,當(dāng)x為多少時,可以獲得最大利潤?并求最大利潤.(利潤=A芯片毛收入+B芯片毛收入-研發(fā)耗費(fèi)資金)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的導(dǎo)函數(shù)的零點(diǎn)個數(shù);
(2)當(dāng)時,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】元旦晚會期間,高三二班的學(xué)生準(zhǔn)備了6 個參賽節(jié)目,其中有 2 個舞蹈節(jié)目,2 個小品節(jié)目,2個歌曲節(jié)目,要求歌曲節(jié)目一定排在首尾,另外2個舞蹈節(jié)目一定要排在一起,則這 6 個節(jié)目的不同編排種數(shù)為
A. 48 B. 36 C. 24 D. 12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com