2014年推出一種新型家用轎車,購(gòu)買時(shí)費(fèi)用為14.4萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽車油費(fèi)共0.7萬元,
汽車維修費(fèi)為:第一年無維修費(fèi)用,第二年為0.2萬元,從第三年起,每年的維修費(fèi)用均比上一年增加0.2萬元
(1)設(shè)該輛轎車使用n年的總費(fèi)用(包括購(gòu)買費(fèi)用,保險(xiǎn)費(fèi),養(yǎng)路費(fèi),汽車費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式.
(2)這種汽車使用多少年報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?
考點(diǎn):數(shù)列與函數(shù)的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知中某種汽車購(gòu)買時(shí)費(fèi)用為14.4萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共0.7萬元,汽車的維修費(fèi)為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,…,依等差數(shù)列逐年遞增,根據(jù)等差數(shù)列前n項(xiàng)和公式,即可得到f(n)的表達(dá)式;
(2)由(1)中使用n年該車的總費(fèi)用,得到n年平均費(fèi)用表達(dá)式,根據(jù)基本不等式,計(jì)算出平均費(fèi)用最小時(shí)的n值,進(jìn)而得到結(jié)論.
解答: 解:(1)由題意得:每年的維修費(fèi)構(gòu)成一等差數(shù)列,n年的維修總費(fèi)用為
[0+0.2(n-1)]
2
n=0.1n2-0.1n
(萬元)…(3分)
所以f(n)=14.4+0.7n+(0.1n2-0.1n)
=0.1n2+0.6n+14.4(萬元)…(6分)
(2)該輛轎車使用n年的年平均費(fèi)用為
f(n)
n
=
0.1n2+0.6n+14.4
n

0.1n+0.6+
14.4
n
…(9分)
≥2
0.1n×
14.4
n
+0.6

=3(萬元)…(11分)
當(dāng)且僅當(dāng)0.1n=
14.4
n
時(shí)取等號(hào),此時(shí)n=12
答:這種汽車使用12年報(bào)廢最合算.…(13分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是根據(jù)實(shí)際問題選擇函數(shù)類型,基本不等式在最值問題中的應(yīng)用,數(shù)列的應(yīng)用,其中(1)的關(guān)鍵是由等差數(shù)列前n項(xiàng)和公式,得到f(n)的表達(dá)式,(2)的關(guān)鍵是根據(jù)基本不等式,得到函數(shù)的最小值點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lgx2的單調(diào)減區(qū)間為(  )
A、R
B、(-∞,0),(0,+∞)
C、(-∞,0)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,單位正方形OABC在二階矩陣T的作用下,變成菱形OA1B1C1
(1)求矩陣T;
(2)設(shè)雙曲線F:x2-y2=1在矩陣T對(duì)應(yīng)的變換作用下得到曲線F′,求曲線F′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某省物理學(xué)會(huì)為了研究高一學(xué)生物理成績(jī)與性別的關(guān)系,選取了一次模擬考試中某班級(jí)的30名男生和20名女生的物理成績(jī),并整理得到如圖所示的頻率分布直方圖,記80分以上(包含80分)為優(yōu)秀,80分以下為非優(yōu)秀.

(Ⅰ)根據(jù)頻率分布直方圖,若按90%的可靠性要求,能否認(rèn)為“成績(jī)與性別有關(guān)系”?
(Ⅱ)從本班物理成績(jī)?yōu)閮?yōu)秀的學(xué)生中任取3人,記女生的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

參考數(shù)據(jù):
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD為邊長(zhǎng)為4的正方形,PA⊥平面ABCD,E為PB中點(diǎn),PB=4
2

(Ⅰ)求證:平面APD⊥平面APB
(Ⅱ)求三棱錐D-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,BC是圓O的切線,切點(diǎn)為B,OC平行于弦AD.
(Ⅰ)求證∠ADO=∠COB;
(Ⅱ)若OB=3,OC=5,求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1+2a2+…+2n-1an=8n對(duì)任意的n∈N*都成立,設(shè)向量
a
=(x,2),
b
=(x+n,2x-1)(n∈N*).函數(shù)f(x)=
a
b
在[0,1]上的最小值與最大值的和為bn
(1)求數(shù)列{an},{bn}的通項(xiàng)公式.
(2)設(shè)cn=an•bn,試求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax3+bx2+c,其中a+b=0,a,b,c均為常數(shù),曲線y=f(x)在(1,f(1))處的切線方程為x+y-1=0.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E是AA1的中點(diǎn).
(Ⅰ)求證:A1C∥平面BDE;
(Ⅱ)求證:平面A1AC⊥平面BDE;
(Ⅲ)求直線BE與平面A1AC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案