已知拋物線C頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當點P(x0,y0)為直線l上的定點時,求直線AB的方程;
(3)當點P在直線l上移動時,求|AF|·|BF|的最小值.
(1) x2=4y (2) y=x0x-y0 (3)
解析解:(1)∵拋物線C的焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為,
∴=,得c=1,
∴F(0,1),即拋物線C的方程為x2=4y.
(2)設(shè)切點A(x1,y1),B(x2,y2),
由x2=4y得y′=x,
∴切線PA:y-y1=x1(x-x1),
有y=x1x-+y1,而=4y1,
即切線PA:y=x1x-y1,
同理可得切線PB:y=x2x-y2.
∵兩切線均過定點P(x0,y0),
∴y0=x1x0-y1,y0=x2x0-y2,
由此兩式知點A,B均在直線y0=xx0-y上,
∴直線AB的方程為y0=xx0-y,
即y=x0x-y0.
(3)設(shè)點P的坐標為(x′,y′),
由x′-y′-2=0,
得x′=y′+2,
則|AF|·|BF|=·
=·
=·
=(y1+1)·(y2+1)
=y1y2+(y1+y2)+1.
由
得y2+(2y′-x′2)y+y′2=0,
有y1+y2=x′2-2y′,y1y2=y′2,
∴|AF|·|BF|=y′2+x′2-2y′+1
=y′2+(y′+2)2-2y′+1
=22+,
當y′=-,x′=時,
即P時,|AF|·|BF|取得最小值.
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的雙曲線的右焦點為,實軸長.
(1)求雙曲線的方程
(2)若直線與雙曲線恒有兩個不同的交點,且為銳角(其中為原點),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓E:+=1(a>b>0)的左、右焦點分別為F1,F2,焦距為2,過F1作垂直于橢圓長軸的弦PQ,|PQ|為3.
(1)求橢圓E的方程;
(2)若過F1的直線l交橢圓于A,B兩點,判斷是否存在直線l使得∠AF2B為鈍角,若存在,求出l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓C:+=1(a>b>0)過點(0,4),離心率為.
(1)求C的方程;
(2)求過點(3,0)且斜率為的直線被C所截線段的中點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
過橢圓的左頂點作斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,拋物線C1:x2=4y,C2:x2=-2py(p>0).點M(x0,y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O).當x0=1-時,切線MA的斜率為-.
(1)求p的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓C1:+=1(a>b>0)的左、右頂點分別為A,B,點P是雙曲線C2:-=1在第一象限內(nèi)的圖象上一點,直線AP,BP與橢圓C1分別交于C,D點,若S△ACD=S△PCD.
(1)求P點的坐標.
(2)能否使直線CD過橢圓C1的右焦點,若能,求出此時雙曲線C2的離心率;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖X15-3所示,已知圓C1:x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標原點O的直線與C2相交于點A,B,定點M的坐標為(0,-1),直線MA,MB分別與C1相交于點D,E.
(1)求證:MA⊥MB;
(2)記△MAB,△MDE的面積分別為S1,S2,若=λ,求λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com