(本題滿分12分)已知分別是橢圓的左右焦點,其左準線與軸相交于點N,并且滿足,設(shè)A、B是上半橢圓上滿足的兩點,其中.(1)求此橢圓的方程;(2)求直線AB的斜率的取值范圍.

(Ⅰ)    (Ⅱ)   (Ⅲ)


解析:

:(1)由于,     ∴,解得,

  ∴橢圓的方程是  ---3分

(2)∵,∴三點共線,而,設(shè)直線的方程為,

   由消去得:

   由,解得              ------------6分

   設(shè),由韋達定理得①,

    又由得:,∴②.

    將②式代入①式得:,  消去得:----8分

    設(shè),當時, 是減函數(shù),

, ---10分∴,解得,又由,∴直線AB的斜率的取值范圍是. --12分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省合肥一中、六中、一六八中學2010-2011學年高二下學期期末聯(lián)考數(shù)學(理 題型:解答題

(本題滿分12分)已知△的三個內(nèi)角、、所對的邊分別為、.,且.(1)求的大;(2)若.求.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆本溪縣高二暑期補課階段考試數(shù)學卷 題型:解答題

(本題滿分12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市高三調(diào)研檢測數(shù)學理卷 題型:解答題

(本題滿分12分)

已知橢圓的長軸長是短軸長的倍,是它的左,右焦點.

(1)若,且,求、的坐標;

(2)在(1)的條件下,過動點作以為圓心、以1為半徑的圓的切線是切點),且使,求動點的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省高二上學期10月月考理科數(shù)學卷 題型:解答題

(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點,分別是左右焦點,求的取值范圍

 

查看答案和解析>>

同步練習冊答案