請根據(jù)所給的圖形,把空白的之處填寫完整.
(Ⅰ)直線與平面平行的性質(zhì)定理(請用符號語言作答)
如圖(1),已知:a∥α,
 

求證:
 

(Ⅱ)平面與平面垂直的性質(zhì)定理的證明(每一個空格1分,共7分)
如圖(2),已知:α⊥β,AB∩CD=B,α∩β=CD,
 
,
 
,
求證:AB⊥β
證明:在β內(nèi)引直線
 
,垂足為B,則
 
是二面角
 
的平面角,由α⊥β知
 

,又AB⊥CD,BE和CD是β內(nèi)的兩條
 
直線,所以AB⊥β.
考點:直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)利用直線與平面平行的性質(zhì)定理求解.
(Ⅱ)利用平面與平面垂直的性質(zhì)定理的求解.
解答: 解:(Ⅰ)已知:a∥α,α?β,α∩β=b,
求證:a∥b.
故答案為:α?β,α∩β=b,a∥b.
(Ⅱ)如圖(2),已知:α⊥β,AB∩CD=B,
α∩β=CD,
AB?α,AB⊥CD,
求證:AB⊥β
證明:在β內(nèi)引直線BE⊥CD,垂足為B,
則∠ABE是二面角α-CD-β的平面角,
由α⊥β,知AB⊥BE,又AB⊥CD,
BE和CD是β內(nèi)的兩條相交直線,所以AB⊥β.
故答案為:AB?α,AB⊥CD,BE⊥CD,∠ABE,α-CD-β,AB⊥BE,相交.
點評:本題考查直線與平面平行的性質(zhì)定理與平面與平面垂直的性質(zhì)定理的求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)與g(x)分別由下表給出
x1234
f(x)3421
x1234
g(x)3421
則與f[g(1)]相同的是( 。
A、g[f(2)]
B、g[f(1)]
C、g[f(3)]
D、g[f(4)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列圖形中,可以作為y是x的一個函數(shù)的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c中,若ac<0,則其圖象與x軸交點個數(shù)是( 。
A、1個B、2個
C、沒有交點D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四面體S-ABC中,各個側(cè)面都是邊長為a的正三角形,則異面直線SA與BC所成的角等于(  )
A、90°B、60°
C、45°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)y=x-2在(0,+∞)的單調(diào)性并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市規(guī)定出租車收費標(biāo)準(zhǔn):起步價(不超過2km)為5元,超過2km時,前2km依然按5元收費,超過2km的部分,每千米收1.5元.
(1)寫出打車費用關(guān)于路程的函數(shù)解析式;
(2)規(guī)定:若遇堵車,每等待5分鐘(不足5分鐘按5分鐘計時),乘客需交費1元,.某乘客打車共行了20km,中途遇到了兩次堵車,第一次等待7分鐘,第二次等待13分鐘,該乘客到達目的地時,該付多少車費?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)的定義域(0,+∞)且滿足以下三個條件:
①對任意實數(shù)m,n都有f(mn)=f(m)+f(n)成立;
②f(x)在定義域上單調(diào)遞減;
③f(2)=-1.
(Ⅰ)求f(1),f(4)的值;
(Ⅱ)求不等式f(x2-x)≤f(3x+2)+2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AD=a,M、N分別是AB、PC的中點.
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求平面PCD與平面ABCD所成二面角的大小;
(Ⅲ)求證:平面MND⊥平面PCD.

查看答案和解析>>

同步練習(xí)冊答案