【題目】設(shè)函數(shù)有兩個極值點,,且

)求的取值范圍,并討論的單調(diào)性.

)證明:

【答案】(1)見解析;(2)見解析.

【解析】試題分析 : (1)先確定函數(shù)的定義域然后求導數(shù),由題意知,是方程的兩個均大于-1的不相等的實根,建立不等關(guān)系解之即可,在函數(shù)的定義域內(nèi)解不等式 ,求出單調(diào)區(qū)間;
(2)是方程的根,將表示,消去得到關(guān)于的函數(shù),研究函數(shù)的單調(diào)性求出函數(shù)的最大值,即可證得不等式.

試題解析 :

)由題意知,函數(shù)的定義域是,

,

有兩個不同的實數(shù)根,故的判別式,即,且,①

,故.因此的取值范圍是

變化時的變化情況如下表:

極大值

極小值

因此在區(qū)間是增函數(shù),在上是減函數(shù).

)由題意和①知,,,

于是

設(shè)函數(shù),則

時,,

時,,故上是增函數(shù).

于是,當.因此.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一個幾何體的三視圖如圖所示,則這個幾何體的體積等于______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線y=x+b與函數(shù)f(x)=ln x的圖象交于兩個不同的點A,B,其橫坐標分別為x1,x2,x1<x2.

(1)b的取值范圍;

(2)x2≥2,證明x1·<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點為,上頂點為,直線與直線垂直,垂足為點,且點是線段的中點.

I)求橢圓的方程;

II)如圖,若直線 與橢圓交于, 兩點,點在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

【答案】I;(II

【解析】試題分析:(1)根據(jù)題意可得 故斜率為,由直線與直線垂直,可得,因為點是線段的中點,∴點的坐標是,

代入直線得,連立方程即可得 ;(2)∵四邊形為平行四邊形,∴,設(shè), ,∴ ,得,將點坐標代入橢圓方程得,

到直線的距離為,利用弦長公式得EF,則平行四邊形的面積為

.

解析:(1)由題意知,橢圓的左頂點,上頂點,直線的斜率,

,

因為點是線段的中點,∴點的坐標是

由點在直線上,∴,且,

解得,

∴橢圓的方程為.

(2)設(shè), , ,

代入消去并整理得 ,

, ,

∵四邊形為平行四邊形,∴ ,

,將點坐標代入橢圓方程得,

到直線的距離為 ,

∴平行四邊形的面積為

.

故平行四邊形的面積為定值.

型】解答
結(jié)束】
21

【題目】已知函數(shù), .

(1)當時,討論函數(shù)的單調(diào)性;

(2)當時,求證:函數(shù)有兩個不相等的零點 ,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)上的最大值為1,求實數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為原點,極軸為軸正方向建立平面直角坐標系,曲線的直角坐標方程是為參數(shù)).

(Ⅰ)將曲線的參數(shù)方程化為普通方程;

(Ⅱ)求曲線與曲線交點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線上的兩個點,點的坐標為,直線的斜率為.設(shè)拋物線的焦點在直線的下方.

)求k的取值范圍;

)設(shè)CW上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2),的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.下表為10名學生的預賽成績,其中有三個數(shù)據(jù)模糊.

學生序號

1

2

3

4

5

6

7

8

9

10

立定跳遠(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳繩(單位:次)

63

a

75

60

63

72

70

a1

b

65

在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則

A2號學生進入30秒跳繩決賽

B5號學生進入30秒跳繩決賽

C8號學生進入30秒跳繩決賽

D9號學生進入30秒跳繩決賽

查看答案和解析>>

同步練習冊答案