精英家教網 > 高中數學 > 題目詳情

已知數列{an}、{bn}、{cn}的通項公式滿足bn=an+1-an,cn=bn+1-bn(n∈N*),若數列{bn}是一個非零常數列,則稱數列{an}是一階等差數列;若數列{cn}是一個非零常數列,則稱數列{an}是二階等差數列?

(1)試寫出滿足條件a=1,b1=1,cn=1(n∈N*)的二階等差數列{an}的前五項;

(2)求滿足條件(1)的二階等差數列{an}的通項公式an;

(3)若數列{an}首項a=2,且滿足cn-bn+1+3an=-2n+1(n∈N*),求數列{an}的通項公式?

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}滿足:a1<0,
an+1
an
=
1
2
,則數列{an}是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,試證明數列{bn}為等比數列;
(II)求數列{an}的通項公式an與前n項和Sn.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•順義區(qū)二模)已知數列{an}中,an=-4n+5,等比數列{bn}的公比q滿足q=an-an-1(n≥2),且b1=a2,則|b1|+|b2|+…+|bn|=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n2+3n+1,則數列{an}的通項公式為
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n2+n,那么它的通項公式為an=
2n
2n

查看答案和解析>>

同步練習冊答案