拋擲一顆質(zhì)地均勻的骰子,設(shè)A表示事件“正面向上的數(shù)字為奇數(shù)”、B表示事件“正面向上的數(shù)字大于3”,則P(A|B)=
 
考點(diǎn):條件概率與獨(dú)立事件
專(zhuān)題:概率與統(tǒng)計(jì)
分析:首先列舉出事件B的基本事件,再列舉出在事件B發(fā)生的條件下,事件A發(fā)生的基本事件,根據(jù)概率公式得
解答: 解:拋擲一顆質(zhì)地均勻的骰子,設(shè)A表示事件“正面向上的數(shù)字為奇數(shù)”、B表示事件“正面向上的數(shù)字大于3”,
則事件B有4,5,6三種情況,在事件B發(fā)生的條件下,事件A發(fā)生的基本事件有5,只有一種情況,根據(jù)概率公式得
則P(A|B)=
1
3

故答案為:
1
3
點(diǎn)評(píng):本題主要考查古典概率的計(jì)算公式,關(guān)鍵是事件B發(fā)生的條件下,事件A發(fā)生的基本事件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l:
x=tcosα
y=1+tsinα
(t為參數(shù),
π
4
≤α≤
π
3
)與圓ρ=2
2
sin(θ+
π
4
)(θ為參數(shù))相交所得的弦長(zhǎng)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量ξ的概率分布為P(ξ=k)=
a
2k
,a為常數(shù),k=1,2,3,4,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)函數(shù)f(x)=3sinx取得最小值時(shí),x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知樣本數(shù)據(jù){x1,x2,…,xn}的方差為a,則樣本數(shù)據(jù){2x1+1,2x2+1,…,2xn+1}的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|x+1|+|x+2|+|x+3|+…+|x+2012|+|x-1|+|x-2|+|x-3|+…+|x-2012|(x∈R),且f(a2-3a+2)=f(a-1),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,則復(fù)平面內(nèi)表示復(fù)數(shù)z=i(1-i)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由一組數(shù)據(jù)(x1,y1)、(x2,y2)、…、(xn,yn)得到的線性回歸方程為y=a+bx,則下列說(shuō)法正確的是( 。
A、直線y=a+bx必過(guò)點(diǎn)(
.
x
,
.
y
B、直線y=a+bx至少經(jīng)過(guò)點(diǎn)(x1,y1)、(x2,y2)、…、(xn,yn)中的一點(diǎn)
C、直線y=a+bx是由(x1,y1)、(x2,y2)、…、(xn,yn)中的兩點(diǎn)確定的
D、(x1,y1)、(x2,y2)、…、(xn,yn),這n個(gè)點(diǎn)到直線y=a+bx的距離之和最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(a,5)作圓(x+2)2+(y-1)2=4的切線,切線長(zhǎng)為2
3
,則a等于(  )
A、-1B、-2C、-3D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案