如圖,四棱錐的底面是平行四邊形,,,面,設(shè)為中點,點在線段上且.
(1)求證:平面;
(2)設(shè)二面角的大小為,若,求的長.
(1)證明詳見解析;(2)2 .
解析試題分析:(1)由已知條件用余弦定理和勾股定理推導出AB⊥AC.又PA⊥面ABCD,以AB,AC,AP分別為x,y,z軸建立坐標系.利用向量法能求出BE∥平面ACF.
(2)分別求出面PCD法向量和面ACF的法向量,由,利用向量法能求出PA的長.
(1)由,得,.
又面,所以以分別為軸建立坐標系如圖.
則 2分
設(shè),則 .
設(shè),得:.
解得:,,,
所以. 4分
所以,,.
設(shè)面的法向量為,則,取.
因為,且面,所以平面. 6分
(2)設(shè)面法向量為,因為,,
所以,取 . 9分
由,得.
,得,∴,所以. 12分
考點:1.直線與平面平行的證明;2.線段長的求法.
科目:高中數(shù)學 來源: 題型:解答題
如圖1,直角梯形中,,,,點為線段上異于的點,且,沿將面折起,使平面平面,如圖2.
(1)求證:平面;
(2)當三棱錐體積最大時,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分別是棱A1B1、AA1的中點,點F在棱AB上,且.
(1)求證:EF∥平面BDC1;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)(2011•湖北)如圖,已知正三棱柱ABC﹣A1B1C1的底面邊長為2,側(cè)棱長為3,點E在側(cè)棱AA1上,點F在側(cè)棱BB1上,且AE=2,BF=.
(I) 求證:CF⊥C1E;
(II) 求二面角E﹣CF﹣C1的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,,為圓柱的母線,是底面圓的直徑,,分別是,的中點,.
(1)證明:;
(2)證明:;
(3)假設(shè)這是個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會有被捕的危險,求魚被捕的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com