【題目】已知函數(shù).
(1)若在上的最小值為,求的值;
(2)若在上恒成立,求的取值范圍.
【答案】(1) (2) a≥-1
【解析】試題分析:(1)求出通過(guò)①若a≥-1,判斷單調(diào)性求解最值;②若a≤-e,③若-e<a<-1,求出函數(shù)的最值,即可得到a的值;
(2)化簡(jiǎn)表達(dá)式為:a>.令g(x)= ,求出h(x)=g′(x)=1+lnx-3x2,求出導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,求出函數(shù)的最值,即可推出結(jié)果.
試題解析:
(1) f′(x)=.
①若a≥-1,則x+a≥0,即f′(x)≥0在[1,e]上恒成立,
此時(shí)f(x)在[1,e]上為增函數(shù),∴f(x)min=f(1)=-a=,∴a=-(舍去).
②若a≤-e,則x+a≤0,即f′(x)≤0在[1,e]上恒成立,
此時(shí)f(x)在[1,e]上為減函數(shù),∴f(x)min=f(e)=1-=,∴a=-(舍去).
③若-e<a<-1,令f′(x)=0得x=-a,
當(dāng)1<x<-a時(shí),f′(x)<0,∴f(x)在(1,-a)上為減函數(shù);當(dāng)-a<x<e時(shí),f′(x)>0,∴f(x)在(-a,e)上為增函數(shù),
∴f(x)min=f(-a)=ln(-a)+1=,∴a=-.綜上所述,a=-.
(2)∵f(x)<x2,∴ln x-<x2.又x>0,∴a>xln x-x3.令g(x)=xln x-x3,h(x)=g′(x)=1+ln x-3x2,h′(x)=-6x=.∵x∈(1,+∞)時(shí),h′(x)<0,∴h(x)在(1,+∞)上是減函數(shù).
∴h(x)<h(1)=-2<0,即g′(x)<0,∴g(x)在(1,+∞)上也是減函數(shù).g(x)<g(1)=-1,
∴當(dāng)a≥-1時(shí),f(x)<x2在(1,+∞)上恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,如果輸入的t=0.01,則輸出的n=( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018貴州遵義市高三上學(xué)期第二次聯(lián)考】設(shè)拋物線的準(zhǔn)線與軸交于,拋物線的焦點(diǎn)為,以為焦點(diǎn),離心率的橢圓與拋物線的一個(gè)交點(diǎn)為;自引直線交拋物線于兩個(gè)不同的點(diǎn),設(shè).
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】無(wú)窮數(shù)列滿足: 為正整數(shù),且對(duì)任意正整數(shù), 為前項(xiàng), , , 中等于的項(xiàng)的個(gè)數(shù).
(Ⅰ)若,請(qǐng)寫出數(shù)列的前7項(xiàng);
(Ⅱ)求證:對(duì)于任意正整數(shù),必存在,使得;
(Ⅲ)求證:“”是“存在,當(dāng)時(shí),恒有 成立”的充要條件。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)中國(guó)日?qǐng)?bào)網(wǎng)報(bào)道:2017年11月13日,TOP500發(fā)布的最新一期全球超級(jí)計(jì)算機(jī)500強(qiáng)榜單顯示,中國(guó)超算在前五名中占據(jù)兩席.其中超算全球第一“神威·太湖之光”完全使用了國(guó)產(chǎn)品牌處理器.為了了解國(guó)產(chǎn)品牌處理器打開(kāi)文件的速度,某調(diào)查公司對(duì)兩種國(guó)產(chǎn)品牌處理器進(jìn)行了12次測(cè)試,結(jié)果如下:(數(shù)值越小,速度越快,單位是MIPS)
(Ⅰ)從品牌的12次測(cè)試中,隨機(jī)抽取一次,求測(cè)試結(jié)果小于7的概率;
(Ⅱ)從12次測(cè)試中,隨機(jī)抽取三次,記為品牌的測(cè)試結(jié)果大于品牌的測(cè)試結(jié)果的次數(shù),求的分布列和數(shù)學(xué)期望;
(Ⅲ)經(jīng)過(guò)了解,前6次測(cè)試是打開(kāi)含有文字與表格的文件,后6次測(cè)試時(shí)打開(kāi)含有文字與圖片的文件.請(qǐng)你依據(jù)表中數(shù)據(jù),運(yùn)用所學(xué)的統(tǒng)計(jì)知識(shí),對(duì)這兩種國(guó)產(chǎn)品牌處理器打開(kāi)文件的速度進(jìn)行評(píng)價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的值;
(2)如果當(dāng),且時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),點(diǎn)是曲線上的一動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的方程為 .
(Ⅰ)求線段的中點(diǎn)的軌跡的極坐標(biāo)方程;
(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且離心率為.
(I)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn).若直線上存在點(diǎn),使得四邊形是平行四邊形,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在棱錐中, 為矩形, 面, , 與面成角, 與面成角.
(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請(qǐng)說(shuō)明理由;
(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com