精英家教網 > 高中數學 > 題目詳情

某建筑公司要在一塊寬大的矩形地面(如圖所示)上進行開發(fā)建設,陰影部分為一公共設施不能建設開發(fā),且要求用欄柵隔開(欄柵要求在直線上),公共設施邊界為曲線的一部分,欄柵與矩形區(qū)域的邊界交于點M、N,切曲線于點P,設

(I)將(O為坐標原點)的面積S表示成f的函數S(t);

(II)若,S(t)取得最小值,求此時a的值及S(t)的最小值.

 

【答案】

(Ⅰ);(Ⅱ)時,.

【解析】

試題分析:(Ⅰ)根據導數的幾何意義,直線的斜率為的導函數值,從而得到直線的方程為;進一步通過確定縱、橫截距,計算三角形的面積.

(Ⅱ)應用導數研究函數的最值,遵循“求導數,求駐點,討論導函數的正負,確定最值”. 注意到本題駐點唯一,其必是“最值點”.

試題解析:Ⅰ),直線的斜率為,

直線的方程為

  3分

,得,

的面積,             6分

(Ⅱ),

因為,由,得,            9分

時, ,

時, .

已知在處, ,故有

故當時,               13分

考點:生活中的優(yōu)化問題舉例,導數的幾何意義,直線方程,應用導數研究函數的最值.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2008•佛山二模)某物流公司購買了一塊長AM=30米、寬AN=20米的矩形地塊,規(guī)劃建設占地如圖中矩形ABCD的倉庫,其余地方為道路或停車場,要求頂點C在地塊對角線MN上,頂點B,D分別在邊AM,AN上,設AB長度為x米.
(1)要使倉庫占地面積不小于144平方米,求x的取值范圍;
(2)若規(guī)劃建設的倉庫是高度與AB的長度相等的長方體建筑,問AB的長度是多少時,倉庫的庫容量最大?(墻地及樓板所占空間忽略不計)

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年廣東佛山質檢文)某物流公司購買了一塊長米,寬米的矩形地塊,規(guī)劃建設占地如圖中矩形的倉庫,其余地方為道路和停車場,要求頂點在地塊對角線上,分別在邊、上,假設長度為米.

(1)要使倉庫占地的面積不少于144平方米,長度應在什么范圍內?

(2)若規(guī)劃建設的倉庫是高度與長度相同的長方體形建筑,問長度為多少時倉庫的庫容最大?(墻體及樓板所占空間忽略不計)

 


 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江西省宜春市五校高三(上)12月月考數學試卷(文科)(解析版) 題型:解答題

某物流公司購買了一塊長AM=30米、寬AN=20米的矩形地塊,規(guī)劃建設占地如圖中矩形ABCD的倉庫,其余地方為道路或停車場,要求頂點C在地塊對角線MN上,頂點B,D分別在邊AM,AN上,設AB長度為x米.
(1)要使倉庫占地面積不小于144平方米,求x的取值范圍;
(2)若規(guī)劃建設的倉庫是高度與AB的長度相等的長方體建筑,問AB的長度是多少時,倉庫的庫容量最大?(墻地及樓板所占空間忽略不計)

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江西省宜春市五校高三(上)聯考數學試卷(文科)(解析版) 題型:解答題

某物流公司購買了一塊長AM=30米、寬AN=20米的矩形地塊,規(guī)劃建設占地如圖中矩形ABCD的倉庫,其余地方為道路或停車場,要求頂點C在地塊對角線MN上,頂點B,D分別在邊AM,AN上,設AB長度為x米.
(1)要使倉庫占地面積不小于144平方米,求x的取值范圍;
(2)若規(guī)劃建設的倉庫是高度與AB的長度相等的長方體建筑,問AB的長度是多少時,倉庫的庫容量最大?(墻地及樓板所占空間忽略不計)

查看答案和解析>>

科目:高中數學 來源:2008年廣東省佛山市高考數學二模試卷(文科)(解析版) 題型:解答題

某物流公司購買了一塊長AM=30米、寬AN=20米的矩形地塊,規(guī)劃建設占地如圖中矩形ABCD的倉庫,其余地方為道路或停車場,要求頂點C在地塊對角線MN上,頂點B,D分別在邊AM,AN上,設AB長度為x米.
(1)要使倉庫占地面積不小于144平方米,求x的取值范圍;
(2)若規(guī)劃建設的倉庫是高度與AB的長度相等的長方體建筑,問AB的長度是多少時,倉庫的庫容量最大?(墻地及樓板所占空間忽略不計)

查看答案和解析>>

同步練習冊答案