【題目】如圖1,在邊長(zhǎng)為2的菱形中,,于點(diǎn),將沿折起到的位置,使,如圖2.

1)求證:平面;

2)在線段上是否存在點(diǎn),使平面平面?若存在,求的值;若不存在,說(shuō)明理由.

【答案】1)證明見(jiàn)解析;(2)存在,且

【解析】

1,,由線面垂直的判定定理得到平面,從而有,又,再由線面垂直的判定定理證明。

2)假設(shè)在線段上是否存在點(diǎn),使平面平面,根據(jù)(1)建立空間直角坐標(biāo)系,設(shè),則,所以,若使平面平面,分別求得兩個(gè)平面的法向量,再通過(guò)兩個(gè)法向量數(shù)量積為零求解.

1)證明:因?yàn)?/span>于點(diǎn),

所以,

,,且,

平面,

,

平面.

2)假設(shè)在線段上是否存在點(diǎn),使平面平面.

根據(jù)(1)建立如圖所示空間直角坐標(biāo)系:

,,

設(shè)

,所以,

所以,

設(shè)平面一個(gè)法向量為:

,即,

,所以,

設(shè)平面一個(gè)法向量為:

,即

,所以,

因?yàn)槠矫?/span>平面

所以,即

解得.

所以在線段上是否存在點(diǎn),使平面平面,且.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列對(duì)任意滿足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是邊長(zhǎng)為3的正方形,平面,,BE與平面所成角為

(Ⅰ)求證:平面 ;

(Ⅱ)求二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)M在線段BD上,且平面BEF,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,.

(1)當(dāng)時(shí),若對(duì)任意均有成立,求實(shí)數(shù)的取值范圍;

(2)設(shè)直線與曲線和曲線相切,切點(diǎn)分別為,,其中.

①求證:;

②當(dāng)時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面垂直于是棱的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求二面角的正弦值;

(Ⅲ)在線段上是否存在一點(diǎn)使得與平面所成角的正弦值為若存在,請(qǐng)求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+bx2+cx-1,當(dāng)x=-2時(shí)有極值,且在x=-1處的切線的斜率為-3.

(1)求函數(shù)f(x)的解析式.

(2)求函數(shù)f(x)在區(qū)間[-1,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線,動(dòng)圓P與圓M相外切,且與直線l相切.設(shè)動(dòng)圓圓心P的軌跡為E.

1)求E的方程;

2)若點(diǎn)A,BE上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且,求證:直線AB恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,上頂點(diǎn)為,右焦點(diǎn)為,離心率為的面積為

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸上的兩個(gè)動(dòng)點(diǎn),且,直線分別與橢圓交于兩點(diǎn).

(。┣的面積最小值;

(ⅱ)證明:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,底面為正方形, 平面, ,點(diǎn)分別為的中點(diǎn).

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案