已知函數(shù)f(x)=ex(ax+b)-ex2,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=-2.
(1)求a,b的值;
(2)求函數(shù)y=f(x)的極值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求導(dǎo)函數(shù),利用曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=-2,建立方程,可求a、b的值
(2)根據(jù)f′(x)的正負(fù)判定f(x)的極值情況并求出.
解答: 解:(1)求導(dǎo)得f′(x)=ex(ax+b+a-2),曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=-2.
f′(0)=0,f(0)=-2,
b+a-2=0,b=-2,
∴a=4,b=-2
(2)由(1)f′(x)=4x•ex,
當(dāng)x>0時(shí),f′(x)>0,當(dāng)x=0時(shí),f′(x)=0,當(dāng)x<0時(shí),f′(x)<0,
所以x=0是f(x)的極小值點(diǎn),
y=f(x)的極小值為f(0)=-2
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的極值求解,解題的關(guān)鍵是正確求導(dǎo),理解極值的含義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

隨著工業(yè)化以及城市車輛的增加,城市的空氣污染越來越嚴(yán)重,空氣質(zhì)量指數(shù)API一直居高不下,對(duì)人體的呼吸系統(tǒng)造成了嚴(yán)重的影響.現(xiàn)調(diào)查了某市500名居民的工作場(chǎng)所和呼吸系統(tǒng)健康,得到2×2列聯(lián)表如下:
室外工作室內(nèi)工作合計(jì)
有呼吸系統(tǒng)疾病150
無呼吸系統(tǒng)疾病100
合計(jì)200
補(bǔ)全2×2列聯(lián)表,你是否認(rèn)為感染呼吸系統(tǒng)疾病與工作場(chǎng)所有關(guān).
參考公式:X2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

P(X2≥k)    0.050      0.010
k    3.841      6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+lnx+(a-4)x在(1,+∞)上是增函數(shù).
(I)求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=e2x-2aex+a,x∈[0,ln3],求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+3ax2+3bx+c在x=2處有極值,其圖象在x=1處的切線與直線6x+2y+5=0平行
(Ⅰ)求a,b的值
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A′B′C′棱長(zhǎng)均為2,點(diǎn)D在側(cè)棱BB′上.
(Ⅰ)求AD+DC′的最小值;
(Ⅱ)當(dāng)AD+DC′取最小值時(shí),求面ADC′和面ABB′A′所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),P(x,y)為函數(shù)y=1+lnx圖象上一點(diǎn),記直線OP的斜率k=f(x).
(Ⅰ)若函數(shù)f(x)在區(qū)間(m,m+
1
2
)(m>0)上存在極值,求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)x≥1時(shí),不等式f(x)≥
t
x+1
恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系Ox中,已知曲線C1:ρcos(θ+
π
4
)=
2
2
與曲線C2;ρ=1相交于A、B兩點(diǎn),求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求與雙曲線
x2
16
-
y2
4
=1有公共焦點(diǎn),且過點(diǎn)(3
2
,2)的雙曲線的標(biāo)準(zhǔn)方程,并寫出其漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合M={x|x>2},N={x|
1
2
<log2x<2},P={x|x≤a-1}.
(1)求如圖陰影部分表示的集合;
(2)若N⊆P,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案