設(shè)A={-3,4},B={x|x2-2ax+b=0},B≠∅且B⊆A,求a、b.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:計算題,集合
分析:由題設(shè)條件知B={-3}或B={4}或B={-3,4}.再根據(jù)集合B的取值分別進(jìn)行分類討論求解.
解答: 解析:因A={-3,4},B={x|x2-2ax+b=0}
B≠∅,B⊆A,那么x2-2ax+b=0的兩根為-3,4,或有重根-3,4.
即B={-3}或B={4}或B={-3,4}
當(dāng)x=-3時,a=-3,b=9
x=4時,a=4,b=16
當(dāng)x1=-3,x2=4時,a=
1
2
,b=-12.
點(diǎn)評:本題考查集合的包含關(guān)系的判斷和應(yīng)用,解題時要認(rèn)真審題,注意分類討論思想的合理應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=3xsin(2x+5);
(2)y=
x3-1
cosx
+2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一塊拋物線形狀的鋼板,計劃將此鋼板切割成等腰梯形ABCD的形狀,使得A,B,C,D都落在拋物線上,點(diǎn)A,B關(guān)于拋物線的軸對稱,且AB=2,拋物線的頂點(diǎn)到底邊的距離是2,記CD=2t,梯形面積為S.
(1)以拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),其對稱軸為y軸建立坐標(biāo)系,使拋物線開口向下,求出該拋物線的方程;
(2)求面積S關(guān)于t的函數(shù)解析式,并寫出其定義域;
(3)求面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),對任意的x∈R,都有f(x-4)=f(2-x)成立,
(1)求2a-b的值;
(2)函數(shù)f(x)取得最小值0,且對任意x∈R,不等式x≤f(x)≤(
x+1
2
2恒成立,求函數(shù)f(x)的解析式;
(3)若方程f(x)=x沒有實數(shù)根,判斷方程f(f(x))=x根的情況,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果對任意的x,y∈R都有f(x+y)=f(x)•f(y),且f(1)=2,
(1)求f(0),f(2),f(3)的值和
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+…+
f(2013)
f(2012)
的值;
(2)若當(dāng)x>0時,有f(x)>1成立,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線C:y=-
1
3
x2+1與坐標(biāo)軸的交點(diǎn)分別為P,F(xiàn)1,F(xiàn)2
(1)求以F1,F(xiàn)2為焦點(diǎn)且過點(diǎn)P的橢圓方程;
(2)經(jīng)過坐標(biāo)原點(diǎn)O的直線l與拋物線相交于A,B兩點(diǎn),若|AO|=3|OB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-alnx(a∈R)
(1)當(dāng)a=2時,求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-ln(x+a)(a是常數(shù)). 
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)y=f(x)在x=1處取得極值時,若關(guān)于x的方程f(x)+2x=x2+b在[
1
2
,2]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;
(3)求證:當(dāng)n≥2,n∈N*時,(1+
1
22
)(1+
1
32
)…(1+
1
n2
)<e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x),x∈R,x≠0
(1)若a>0且a≠1,f(logax)=x-
1
x
,求f(x)的解析式,并判斷f(x)的奇偶性.
(2)若f(x)=x+
1
x
,判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性并加以證明.

查看答案和解析>>

同步練習(xí)冊答案