【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護人員的共同努力,新冠肺炎疫情得到了有效控制.作為集中醫(yī)學(xué)觀察隔離點的某酒店在疫情期間,為客人提供兩種速食品—“方便面”和“自熱米飯”.為調(diào)查這兩種速食品的受歡迎程度,酒店部門經(jīng)理記錄了連續(xù)10天這兩種速食品的銷售量,得到如下頻數(shù)分布表(其中銷售量單位:盒):
第天 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
方便面 | 103 | 93 | 98 | 93 | 106 | 86 | 87 | 94 | 91 | 99 |
自熱米飯 | 88 | 96 | 98 | 97 | 101 | 99 | 102 | 107 | 104 | 112 |
(1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖(填到答題卡上);
(2)根據(jù)統(tǒng)計學(xué)知識,你認為哪種速食品更受歡迎,并簡要說明理由;
(3)求自熱米飯銷售量y關(guān)于天數(shù)t的線性回歸方程,并預(yù)估第12天自熱米飯的銷售量(結(jié)果精確到整數(shù)).
參考數(shù)據(jù):,.
附:回歸直線方程,其中,.
【答案】(1)作圖見解析(2)自熱米飯更受歡迎,詳見解析(3);預(yù)估第12天自熱米飯的銷售量為113個
【解析】
(1)利用已知條件,直接求解莖葉圖.
(2)解法一:由(1)中的莖葉圖可知,自熱米飯的銷售量較方便面更高,兩種速食品的銷售量波動情況相當,所以認為自熱米飯更受歡迎. 解法二:方便面的銷售量平均值,自熱米飯的銷售量平均值,推出結(jié)果.
(3)求出樣本中心,回歸直線方程的斜率,然后求解截距,得到回歸直線方程,然后求解預(yù)估第12天自熱米飯的銷售量個數(shù).
解:(1)莖葉圖如下:
(2)解法一:由(1)中的莖葉圖可知,自熱米飯的銷售量較方便面更高,兩種速食品的銷售量波動情況相當,所以認為自熱米飯更受歡迎.
解法二:方便面的銷售量平均值為,
自熱米飯的銷售量平均值為,
所以自熱米飯的銷售量平均值比方便面銷售量平均值更高,因此認為自熱米飯更受歡迎.
(3)計算,
又,,
∴,
.
因此自熱米飯銷售量y關(guān)于天數(shù)t的線性回歸方程為.
當時,(個),
所以預(yù)估第12天自熱米飯的銷售量為113個.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),以原點為極點,以軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的普通方程與曲線的直角坐標方程;
(Ⅱ)設(shè)點,分別是曲線,上兩動點且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與y軸交于點,與x軸交于A,B兩點,其中,.
(1)求函數(shù)的解析式;
(2)將函數(shù)圖象上所有點的橫坐標縮短為原來的(縱坐標不變),得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點作圓的切線,已知,分別為切點,直線恰好經(jīng)過橢圓的右焦點和下頂點,則直線方程為___________;橢圓的標準方程是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知等邊的邊長為3,點,分別是邊,上的點,且,.如圖2,將沿折起到的位置.
(1)求證:平面平面;
(2)給出三個條件:①;②二面角大小為;③.在這三個條件中任選一個,補充在下面問題的條件中,并作答:在線段上是否存在一點,使直線與平面所成角的正弦值為,若存在,求出的長;若不存在,請說明理由.注:如果多個條件分別解答,按第一個解答給分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設(shè)置觀景臺,記BC=a,AC=b,AB=c(單位:百米)
(1)若a,b,c成等差數(shù)列,且公差為4,求b的值;
(2)已知AB=12,記∠ABC=θ,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)|2x﹣3|,g(x)|2x+a+b|.
(1)解不等式f(x)x2;
(2)當a0,b0時,若F(x)f(x)+g(x)的值域為[5,+∞),求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com