【題目】[選修4-4:坐標系與參數(shù)方程選講]

在平面直角坐標系xOy中,以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C1 , C2的極坐標方程分別為ρ=2sinθ,ρcos(θ﹣ )=
(Ⅰ)求C1和C2交點的極坐標;
(Ⅱ)直線l的參數(shù)方程為: (t為參數(shù)),直線l與x軸的交點為P,且與C1交于A,B兩點,求|PA|+|PB|.

【答案】解:(Ⅰ)由C1 , C2極坐標方程分別為ρ=2sinθ,
化為平面直角坐標系方程分為x2+(y﹣1)2=1,x+y﹣2=0.
得交點坐標為(0,2),(1,1).
即C1和C2交點的極坐標分別為
(II)把直線l的參數(shù)方程: (t為參數(shù)),代入x2+(y﹣1)2=1,

即t2﹣4t+3=0,t1+t2=4,
所以|PA|+|PB|=4
【解析】(Ⅰ)求出C1和C2的直角坐標方程,得出交點坐標,再求C1和C2交點的極坐標;(Ⅱ)利用參數(shù)的幾何意義,即可求|PA|+|PB|.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是奇函數(shù),當x<0,f(x)=﹣x2+x,若不等式f(x)﹣x≤2logax(a>0且a≠1)對x∈(0, ]恒成立,則實數(shù)a的取值范圍是(
A.(0, ]
B.[ ,1)
C.(0, ]
D.[ , ]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)g(x)=log (x2+ bx+ )的單調(diào)遞增區(qū)間為(

A.[﹣2,+∞)
B.(﹣∞,﹣2)
C.(3,+∞)
D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種.若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

A1

上一個年度未發(fā)生有責任道路交通事故

下浮10%

A2

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

A3

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

A4

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

A5

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

A6

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b分別是△ABC內(nèi)角A,B的對邊,且bsin2A= acosAsinB,函數(shù)f(x)=sinAcos2x﹣sin2 sin 2x,x∈[0, ].
(Ⅰ)求A;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機變量Z~N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機投擲10000個點,則落入陰影部分的點的個數(shù)的估計值為( )
附:若Z~N(μ,σ2),則 P(μ﹣σ<Z≤μ+σ)=0.6826;P(μ﹣2σ<Z≤μ+2σ)=0.9544;P(μ﹣3σ<Z≤μ+3σ)=0.9974.

A.6038
B.6587
C.7028
D.7539

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1
(3)設(shè)CU,DU,SC≥SD , 求證:SC+SCD≥2SD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:x0∈(0,+∞),x0+ >3;命題q:x∈(2,+∞),x2>2x , 則下列命題為真的是(
A.p∧(¬q)
B.(¬p)∧q
C.p∧q
D.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)使用計算器求30個數(shù)據(jù)的平均數(shù)時,錯將其中一個數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實際平均數(shù)的差是

查看答案和解析>>

同步練習冊答案