【題目】已知圓x2+y2+x-6y+m=0與直線x+2y-3=0相交于P、Q兩點,O為原點,且OP⊥OQ,求實數(shù)m的值.
【答案】解:設點P、Q的坐標分別為(x1 , y1)、(x2 , y2).
由OP⊥OQ,得kOPkOQ=-1,即 .①
聯(lián)立 得5x2+10x+4m-27=0,②
∴x1+x2=-2,x1x2= . ③
∵P、Q是在直線x+2y-3=0上,
∴y1y2= (3-x1)· (3-x2)= [9-3(x1+x2)+x1x2].
將③代入,得y1y2= . ④
將③④代入①,解得m=3.代入方程②,檢驗Δ>0成立,
∴m=3
【解析】將直線和圓進行聯(lián)立,利用根與系數(shù)之間的關系建立條件方程,利用韋達定理和兩向量垂直的性質可以求出m的值來。
【考點精析】掌握數(shù)量積判斷兩個平面向量的垂直關系是解答本題的根本,需要知道若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=-x3-2x2+4x,當x∈[-3,3]時,f(x)≥a有恒成立,則實數(shù)a的取值范圍是( )
A.(-3,11)
B.[-33,+∞)
C.(-∞,-33]
D.[2,7]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”: 2 = ,3 = ,4 = ,5 =
則按照以上規(guī)律,若8 = 具有“穿墻術”,則n=( )
A.7
B.35
C.48
D.63
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉化,相互統(tǒng)一的和諧美.定義:能夠將圓O的周長和面積同時等分成兩部分的函數(shù)稱為圓煌一個“太極函數(shù)”下列有關說法中:
①對圓O:x2+y2=1的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)f(x)=sinx+1是圓O:x2+(y﹣1)2=1的一個太極函數(shù);
③存在圓O,使得f(x)= 是圓O的太極函數(shù);
④直線(m+1)x﹣(2m+1)y﹣1=0所對應的函數(shù)一定是圓O:(x﹣2)2+(y﹣1)2=R2(R>0)的太極函數(shù).
所有正確說法的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓 : x2+y2+Dx+Ey+3=0 ,圓 關于直線 x+y-1=0對稱,圓心在第二象限,半徑為 .
(1)求圓 的方程;
(2)已知不過原點的直線 l 與圓 相切,且在 軸、 軸上的截距相等,求直線 l 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲和乙參加有獎競猜闖關活動,活動規(guī)則:①闖關過程中,若闖關成功則繼續(xù)答題;若沒通關則被淘汰;②每人最多闖3關;③闖第一關得10萬獎金,闖第二關得20萬獎金,闖第三關得30萬獎金,一關都沒過則沒有獎金.已知甲每次闖關成功的概率為 ,乙每次闖關成功的概率為 .
(1)設乙的獎金為ξ,求ξ的分布列和數(shù)學期望;
(2)求甲恰好比乙多30萬元獎金的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(x﹣1)=f(3﹣x)且方程f(x)=2x有兩個相等實數(shù)根 (Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[4m,4n],如果存在,求出符合條件的所有m,n的值,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標平面內,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是ρ=4sinθ,直線l的參數(shù)方程是 (t為參數(shù)).
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)求曲線C上的點到直線l的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com