【題目】已知向量 =(1,m), =(2,n).
(1)若m=3,n=﹣1,且 ⊥( ),求實數(shù)λ的值;
(2)若| + |=5,求 的最大值.

【答案】
(1)解: m=3,n=﹣1時, =(1,3), =(2,﹣1),

=(1+2λ,3﹣λ),

⊥( ),

)=1+2λ+3(3﹣λ)=0,

解得λ=10,


(2)∵ =(1,m), =(2,n),

+ =(3,m+n), =2+mn,

∵| + |=5,

∴9+(m+n)2=25,

∴(m+n)2=16,

=2+mn≤2+ (m+n)2=6,

當且僅當m=n=2或m=n=﹣2時取等號,

的最大值6.


【解析】(1)先計算的坐標,再由已知條件可得含有λ的方程,解方程可得實數(shù)λ的值;(2)先計算+的坐標和,再由已知條件可得(m+n)2,進而利用基本不等式可得 的最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的右焦點為F2(1,0),點H(2, )在橢圓上.
(1)求橢圓的方程;
(2)點M在圓x2+y2=b2上,且M在第一象限,過M作圓x2+y2=b2的切線交橢圓于P,Q兩點,求證:△PF2Q的周長是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分別是棱A1B1、AB、A1D1的中點.

(Ⅰ)求證:GE⊥平面FCC1;
(Ⅱ)求二面角B﹣FC1﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設F1和F2為雙曲線 =1(a>0,b>0)的兩個焦點,若F1 , F2 , P(0,2b)是正三角形的三個頂點,則雙曲線的漸近線方程是(  )
A.y=± x
B.y=± x
C.y=± x
D.y=± x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱柱ABC﹣A1B1C1中,已知AB⊥側面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.

(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直線上的一點,若二面角A﹣B1E﹣B的正弦值為 ,求CE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足Sn=2an﹣2;數(shù)列{bn}的前n項和為Tn , 且滿足b1=1,b2=2,
(1)求數(shù)列{an}、{bn}的通項公式;
(2)是否存在正整數(shù)n,使得 恰為數(shù)列{bn}中的一項?若存在,求所有滿足要求的bn;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,已知∠A= ,∠B= ,AB=6.在AB邊上取點E使得BE=1,連結EC,ED,若∠CED= ,EC= .則CD=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b是正實數(shù),設函數(shù)f(x)=xlnx,g(x)=﹣a+xlnb.
(Ⅰ)設h(x)=f(x)﹣g(x),求h(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x0 , 使x0∈[ , ]且f(x0)≤g(x0)成立,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)h(x)=﹣|x﹣3|.
(1)若h(x)﹣|x﹣2|≤n對任意的x>0恒成立,求實數(shù)n的最小值;
(2)若函數(shù)f(x)= ,求函數(shù)g(x)=f(x)+h(x)的值域.

查看答案和解析>>

同步練習冊答案